1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Origins of Afrotropical freshwater fishes

      1
      Zoological Journal of the Linnean Society
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Afrotropics house a diverse freshwater ichthyofauna with > 3000 species, almost all of which are endemic. Recent progress in dated phylogenetics and palaeontology of several groups of Afrotropical freshwater fishes (AFFs) has allowed the testing of palaeoecology- and palaeogeography-based hypotheses explaining their early presence in Africa. Seven hypotheses were tested for 37 most-inclusive monophyletic groups of AFFs. Results indicated that ten lineages originated from direct, but asynchronous, marine-to-freshwater shifts. These lineages contribute < 2% to the current AFF species richness. Eleven lineages colonized the Afrotropics from the Orient after the Afro-Arabian plate collided with Eurasia in the early Oligocene. These lineages contribute ~20% to the total diversity. There are seven sister relationships between Afrotropical and Neotropical taxa. For only three of them (4% of the species diversity), the continental drift vicariance hypothesis was not rejected. Distributions of the other four younger trans-Atlantic lineages are better explained by post-drifting long-distance dispersal. In those cases, I discuss the possibility of dispersal through the Northern Hemisphere as an alternative to direct trans-Atlantic dispersal. The origins of ten AFF lineages, including the most species-rich Pseudocrenilabrinae (> 1100 species), are not yet established with confidence.

          Related collections

          Most cited references367

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronology of fluctuating sea levels since the triassic.

            Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Phanerozoic record of global sea-level change.

              K. Miller (2005)
              We review Phanerozoic sea-level changes [543 million years ago (Ma) to the present] on various time scales and present a new sea-level record for the past 100 million years (My). Long-term sea level peaked at 100 +/- 50 meters during the Cretaceous, implying that ocean-crust production rates were much lower than previously inferred. Sea level mirrors oxygen isotope variations, reflecting ice-volume change on the 10(4)- to 10(6)-year scale, but a link between oxygen isotope and sea level on the 10(7)-year scale must be due to temperature changes that we attribute to tectonically controlled carbon dioxide variations. Sea-level change has influenced phytoplankton evolution, ocean chemistry, and the loci of carbonate, organic carbon, and siliciclastic sediment burial. Over the past 100 My, sea-level changes reflect global climate evolution from a time of ephemeral Antarctic ice sheets (100 to 33 Ma), through a time of large ice sheets primarily in Antarctica (33 to 2.5 Ma), to a world with large Antarctic and large, variable Northern Hemisphere ice sheets (2.5 Ma to the present).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Zoological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4082
                1096-3642
                October 17 2019
                October 17 2019
                Affiliations
                [1 ]School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
                Article
                10.1093/zoolinnean/zlz039
                c4e6dcc6-d540-4753-9e63-c5408adcb8cf
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model


                Comments

                Comment on this article