36
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disease- and treatment-associated acquired glucocorticoid resistance

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM–SEDIGRAM concept to reduce the side-effect profile of GCs.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          Ginseng pharmacology: multiple constituents and multiple actions.

          Ginseng is a highly valued herb in the Far East and has gained popularity in the West during the last decade. There is extensive literature on the beneficial effects of ginseng and its constituents. The major active components of ginseng are ginsenosides, a diverse group of steroidal saponins, which demonstrate the ability to target a myriad of tissues, producing an array of pharmacological responses. However, many mechanisms of ginsenoside activity still remain unknown. Since ginsenosides and other constituents of ginseng produce effects that are different from one another, and a single ginsenoside initiates multiple actions in the same tissue, the overall pharmacology of ginseng is complex. The ability of ginsenosides to independently target multireceptor systems at the plasma membrane, as well as to activate intracellular steroid receptors, may explain some pharmacological effects. This commentary aims to review selected effects of ginseng and ginsenosides and describe their possible modes of action. Structural variability of ginsenosides, structural and functional relationship to steroids, and potential targets of action are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucocorticoid resistance in inflammatory diseases.

            Glucocorticoid resistance or insensitivity is a major barrier to the treatment of several common inflammatory diseases-including chronic obstructive pulmonary disease and acute respiratory distress syndrome; it is also an issue for some patients with asthma, rheumatoid arthritis, and inflammatory bowel disease. Several molecular mechanisms of glucocorticoid resistance have now been identified, including activation of mitogen-activated protein (MAP) kinase pathways by certain cytokines, excessive activation of the transcription factor activator protein 1, reduced histone deacetylase-2 (HDAC2) expression, raised macrophage migration inhibitory factor, and increased P-glycoprotein-mediated drug efflux. Patients with glucocorticoid resistance can be treated with alternative broad-spectrum anti-inflammatory treatments, such as calcineurin inhibitors and other immunomodulators, or novel anti-inflammatory treatments, such as inhibitors of phosphodiesterase 4 or nuclear factor kappaB, although these drugs are all likely to have major side-effects. An alternative treatment strategy is to reverse glucocorticoid resistance by blocking its underlying mechanisms. Some examples of this approach are inhibition of p38 MAP kinase, use of vitamin D to restore interleukin-10 response, activation of HDAC2 expression by use of theophylline, antioxidants, or phosphoinositide-3-kinase-delta inhibitors, and inhibition of macrophage migration inhibitory factor and P-glycoprotein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex.

              Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                December 2018
                11 October 2018
                : 7
                : 12
                : R328-R349
                Affiliations
                [1]Department of Biochemistry , Stellenbosch University, Stellenbosch, South Africa
                Author notes
                Correspondence should be addressed to A Louw: al@ 123456sun.ac.za
                Article
                EC-18-0421
                10.1530/EC-18-0421
                6280593
                30352419
                c4f7ddce-f2a6-4f6b-85d7-1399646f47e6
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 28 September 2018
                : 11 October 2018
                Categories
                Review

                glucocorticoid receptor,glucocorticoid resistance,acquired resistance,biased ligands,grα downregulation

                Comments

                Comment on this article