+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The value of computed tomography perfusion & transcranial Doppler in early diagnosis of cerebral vasospasm in aneurysmal & traumatic subarachnoid hemorrhage


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Early detection and diagnosis of cerebral vasospasm in subarachnoid hemorrhage may be challenging both on clinical and radiographic grounds. In this respect we conducted a pilot study in order to assess the feasibility of the technique in the everyday setting of a tertiary hospital and to evaluate the diagnostic performance of different diagnostic computed tomography perfusion aspects in diagnosing the clinical outcome of patients with subarachnoid hemorrhage. Receiver-operating characteristic analysis showed that a cerebral blood flow value of <24.5 presented 67% sensitivity and 100% specificity to diagnose adverse ischemic events at 1 month (p = 0.041). These case series data provide evidence that computed tomography perfusion-derived cerebral blood flow is a measurable index that may detect the degree of cerebral ischemia in a very early stage.

          Lay abstract

          Early detection and diagnosis of cerebral vasospasm in subarachnoid hemorrhage is important but may be challenging both on clinical or radiographic grounds. This article provides evidence that computed tomography perfusion-derived cerebral blood flow is a measurable index that could detect the degree of cerebral ischemia in a very early stage in patients suffering with subarachnoid hemorrhage. Larger studies are needed in order to better define the role of computed tomography perfusion in early diagnosis of cerebral vasospasm.

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke.

          Different definitions have been proposed to define the ischemic penumbra from perfusion-CT (PCT) data, based on parameters and thresholds tested only in small pilot studies. The purpose of this study was to perform a systematic evaluation of all PCT parameters (cerebral blood flow, volume [CBV], mean transit time [MTT], time-to-peak) in a large series of acute stroke patients, to determine which (combination of) parameters most accurately predicts infarct and penumbra. One hundred and thirty patients with symptoms suggesting hemispheric stroke < or =12 hours from onset were enrolled in a prospective multicenter trial. They all underwent admission PCT and follow-up diffusion-weighted imaging/fluid-attenuated inversion recovery (DWI/FLAIR); 25 patients also underwent admission DWI/FLAIR. PCT maps were assessed for absolute and relative reduced CBV, reduced cerebral blood flow, increased MTT, and increased time-to-peak. Receiver-operating characteristic curve analysis was performed to determine the most accurate PCT parameter, and the optimal threshold for each parameter, using DWI/FLAIR as the gold standard. The PCT parameter that most accurately describes the tissue at risk of infarction in case of persistent arterial occlusion is the relative MTT (area under the curve=0.962), with an optimal threshold of 145%. The PCT parameter that most accurately describes the infarct core on admission is the absolute CBV (area under the curve=0.927), with an optimal threshold at 2.0 ml x 100 g(-1). In a large series of 130 patients, the optimal approach to define the infarct and the penumbra is a combined approach using 2 PCT parameters: relative MTT and absolute CBV, with dedicated thresholds.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Management of delayed cerebral ischemia after subarachnoid hemorrhage

            For patients who survive the initial bleeding event of a ruptured brain aneurysm, delayed cerebral ischemia (DCI) is one of the most important causes of mortality and poor neurological outcome. New insights in the last decade have led to an important paradigm shift in the understanding of DCI pathogenesis. Large-vessel cerebral vasospasm has been challenged as the sole causal mechanism; new hypotheses now focus on the early brain injury, microcirculatory dysfunction, impaired autoregulation, and spreading depolarization. Prevention of DCI primarily relies on nimodipine administration and optimization of blood volume and cardiac performance. Neurological monitoring is essential for early DCI detection and intervention. Serial clinical examination combined with intermittent transcranial Doppler ultrasonography and CT angiography (with or without perfusion) is the most commonly used monitoring paradigm, and usually suffices in good grade patients. By contrast, poor grade patients (WFNS grades 4 and 5) require more advanced monitoring because stupor and coma reduce sensitivity to the effects of ischemia. Greater reliance on CT perfusion imaging, continuous electroencephalography, and invasive brain multimodality monitoring are potential strategies to improve situational awareness as it relates to detecting DCI. Pharmacologically-induced hypertension combined with volume is the established first-line therapy for DCI; a good clinical response with reversal of the presenting deficit occurs in 70 % of patients. Medically refractory DCI, defined as failure to respond adequately to these measures, should trigger step-wise escalation of rescue therapy. Level 1 rescue therapy consists of cardiac output optimization, hemoglobin optimization, and endovascular intervention, including angioplasty and intra-arterial vasodilator infusion. In highly refractory cases, level 2 rescue therapies are also considered, none of which have been validated. This review provides an overview of current state-of-the-art care for DCI management.
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements.

              We investigated whether computed tomography (CT) perfusion-derived cerebral blood flow (CBF) and cerebral blood volume (CBV) could be used to differentiate between penumbra and infarcted gray matter in a limited, exploratory sample of acute stroke patients. Thirty patients underwent a noncontrast CT (NCCT), CT angiography (CTA), and CT perfusion (CTP) scan within 7 hours of stroke onset, NCCT and CTA at 24 hours, and NCCT at 5 to 7 days. Twenty-five patients met the criteria for inclusion and were subsequently divided into 2 groups: those with recanalization at 24 hours (n=16) and those without (n=9). Penumbra was operationally defined as tissue with an admission CBF <25 mL x 100 g(-1) x min(-1) that was not infarcted on the 5- to 7-day NCCT. Logistic regression was applied to differentiate between infarct and penumbra data points. For recanalized patients, CBF was significantly lower (P<0.05) for infarct (13.3+/-3.75 mL x 100 g(-1) x min(-1)) than penumbra (25.0+/-3.82 mL x 100 g(-1) x min(-1)). CBV in the penumbra (2.15+/-0.43 mL x 100 g(-1)) was significantly higher than contralateral (1.78+/-0.30 mL x 100 g(-1)) and infarcted tissue (1.12+/-0.37 mL x 100 g(-1)). Logistic regression using an interaction term (CBFxCBV) resulted in sensitivity, specificity, and accuracy of 97.0%, 97.2%, and 97.1%, respectively. The interaction term resulted in a significantly better (P<0.05) fit than CBF or CBV alone, suggesting that the CBV threshold for infarction varies with CBF. For patients without recanalization, CBF and CBV for infarcted regions were 15.1+/-5.67 mL x 100 g(-1) x min(-1) and 1.17+/-0.41 mL x 100 g(-1), respectively. We have shown in a limited sample of patients that CBF and CBV obtained from CTP can be sensitive and specific for infarction and should be investigated further in a prospective trial to assess their utility for differentiating between infarct and penumbra.

                Author and article information

                Future Sci OA
                Future Sci OA
                Future Science OA
                Future Science Ltd (London, UK )
                July 2018
                26 June 2018
                : 4
                : 6
                : FSO313
                [1 ]Department of Neurosurgery, University Hospital of Thessaly, University Hospital of Larissa, Biopolis, 41110 Larissa, Thessaly, Greece
                [2 ]Department of Head of Critical Care, University of Thessaly, University Hospital of Larissa, Biopolis, 41110 Larissa, Thessaly, Greece
                [3 ]Departments of Neurosurgery & Diagnostic Radiology, University Hospital of Larisa, Faculty of Medicine, University of Thessaly, Larissa, Greece
                Author notes
                *Author for correspondence: Tel.: +30 262 105 1828; gfotakop@ 123456yahoo.gr
                © 2018 Fotakopoulos George

                This work is licensed under a Creative Commons Attribution 4.0 License

                : 05 February 2018
                : 02 May 2018
                : 26 June 2018
                Case Study

                cerebral vasospasm,ct perfusion,subarachnoid hemorrhage,transcranial doppler


                Comment on this article