25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Several risk factors promote AF, among which diabetes mellitus has emerged as one of the most important. The growing recognition that obesity, diabetes and AF are closely intertwined disorders has spurred major interest in uncovering their mechanistic links. In this article we provide an update on the growing evidence linking oxidative stress and inflammation to adverse atrial structural and electrical remodeling that leads to the onset and maintenance of AF in the diabetic heart. We then discuss several therapeutic strategies to improve atrial excitability by targeting pathways that control oxidative stress and inflammation.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Human epicardial adipose tissue is a source of inflammatory mediators.

          Inflammatory mediators that originate in vascular and extravascular tissues promote coronary lesion formation. Adipose tissue may function as an endocrine organ that contributes to an inflammatory burden in patients at risk of cardiovascular complications. In this study, we sought to compare expression of inflammatory mediators in epicardial and subcutaneous adipose stores in patients with critical CAD. Paired samples of epicardial and subcutaneous adipose tissues were harvested at the outset of elective CABG surgery (n=42; age 65+/-10 years). Local expression of chemokine (monocyte chemotactic protein [MCP]-1) and inflammatory cytokines (interleukin [IL]-1beta, IL-6, and tumor necrosis factor [TNF]-alpha) was analyzed by TaqMan real-time reverse transcription-polymerase chain reaction (mRNA) and by ELISA (protein release over 3 hours). Significantly higher levels of IL-1beta, IL-6, MCP-1, and TNF-alpha mRNA and protein were observed in epicardial adipose stores. Proinflammatory properties of epicardial adipose tissue were noted irrespective of clinical variables (diabetes, body mass index, and chronic use of statins or ACE inhibitors/angiotensin II receptor blockers) or plasma concentrations of circulating biomarkers. In a subset of samples (n=11), global gene expression was explored by DNA microarray hybridization and confirmed the presence of a broad inflammatory reaction in epicardial adipose tissue in patients with coronary artery disease. The above findings were paralleled by the presence of inflammatory cell infiltrates in epicardial adipose stores. Epicardial adipose tissue is a source of several inflammatory mediators in high-risk cardiac patients. Plasma inflammatory biomarkers may not adequately reflect local tissue inflammation. Current therapies do not appear to eliminate local inflammatory signals in epicardial adipose tissue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.

            The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was phosphorylated in N1E-115 neuroblastoma cells during lysophosphatidic acid-induced, Rho-mediated neurite retraction. This phosphorylation was sensitive to Y-27632, a specific inhibitor of the Rho-associated kinase ROCK. ROCK, which is a downstream effector of Rho, did not phosphorylate cofilin directly but phosphorylated LIM-kinase, which in turn was activated to phosphorylate cofilin. Overexpression of LIM-kinase in HeLa cells induced the formation of actin stress fibers in a Y-27632-sensitive manner. These results indicate that phosphorylation of LIM-kinase by ROCK and consequently increased phosphorylation of cofilin by LIM-kinase contribute to Rho-induced reorganization of the actin cytoskeleton.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study.

              Pericardial fat may be an important mediator of metabolic risk. Correlations with cardiovascular disease risk factors and vascular calcification in a community-based sample are lacking. We sought to examine associations between pericardial fat, metabolic risk factors, and vascular calcification. Participants free of cardiovascular disease from the Framingham Heart Study (n=1155, mean age 63 years, 54.8% women) who were part of a multidetector computed tomography study underwent quantification of intrathoracic fat, pericardial fat, visceral abdominal fat (VAT), coronary artery calcification, and aortic artery calcification. Intrathoracic and pericardial fat volumes were examined in relation to body mass index, waist circumference, VAT, metabolic risk factors, coronary artery calcification, and abdominal aortic calcification. Intrathoracic and pericardial fat were directly correlated with body mass index (r=0.41 to 0.51, P 0.05). Pericardial fat, but not intrathoracic fat, was associated with coronary artery calcification after multivariable and VAT adjustment (odds ratio 1.21, 95% confidence interval 1.005 to 1.46, P=0.04), whereas intrathoracic fat, but not pericardial fat, was associated with abdominal aortic calcification (odds ratio 1.32, 95% confidence interval 1.03 to 1.67, P=0.03). Pericardial fat is correlated with multiple measures of adiposity and cardiovascular disease risk factors, but VAT is a stronger correlate of most metabolic risk factors. However, intrathoracic and pericardial fat are associated with vascular calcification, which suggests that these fat depots may exert local toxic effects on the vasculature.
                Bookmark

                Author and article information

                Contributors
                basil.karam@gmail.com
                alejandrocmor@gmail.com
                wonjoonk@gmail.com
                joseph.akar@yale.edu
                212-241-9251 , fadi.akar@mssm.edu , http://labs.icahn.mssm.edu/akarlab/
                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central (London )
                1475-2840
                29 September 2017
                29 September 2017
                2017
                : 16
                : 120
                Affiliations
                [1 ]ISNI 0000 0001 0670 2351, GRID grid.59734.3c, Cardiovascular Institute, , Icahn School of Medicine at Mount Sinai, ; New York, NY USA
                [2 ]ISNI 0000000419368710, GRID grid.47100.32, Section of Cardiovascular Medicine, , Yale University School of Medicine, ; New Haven, CT USA
                Article
                604
                10.1186/s12933-017-0604-9
                5622555
                28962617
                c505d6ca-8183-456b-85d3-91a5a1b5b138
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 May 2017
                : 22 September 2017
                Funding
                Funded by: National Institutes of Health
                Award ID: R01 HL091923
                Award ID: R21AG054211
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2017

                Endocrinology & Diabetes
                atrial fibrillation,diabetes,oxidative stress,electrical remodeling,fibrosis

                Comments

                Comment on this article