Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulation of gluteus medius activity reflects the potential of the muscle to meet the mechanical demands during perturbed walking

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mediolateral stability during walking can be controlled by adjustment of foot placement. Reactive activity of gluteus medius (GM) is modulated during the gait cycle. However, the mechanisms behind the modulation are yet unclear. We measured reactive GM activity and kinematics in response to a mediolateral platform translation during different phases of the gait cycle. Forward simulations of perturbed walking were used to evaluate the isolated effect of the perturbation and the GM response on gait stability. We showed that the potential of GM to adjust lateral foot placement and prevent collisions during swing varies during the gait cycle and explains the observed modulation. The observed increase in stance, swing or combined GM activity causes an outward foot placement and therefore compensates for the loss of stability caused by a perturbation early in the gait cycle. GM activity of the swing leg in response to a platform translation late in the gait cycle counteracts foot placement, but prevents collision of the swing foot with the stance leg. This study provides insights in the neuromechanics of reactive control of gait stability and proposes a novel method to distinguish between the effect of perturbation force and reactive muscle activity on gait stability.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          OpenSim: open-source software to create and analyze dynamic simulations of movement.

          Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A gait analysis data collection and reduction technique

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Passive Dynamic Walking

               T McGeer (1990)
                Bookmark

                Author and article information

                Contributors
                maarten.afschrift@kuleuven.be
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                3 August 2018
                3 August 2018
                2018
                : 8
                Affiliations
                [1 ]ISNI 0000 0001 0668 7884, GRID grid.5596.f, Department of Movement Sciences, , KU Leuven, ; Leuven, Belgium
                [2 ]ISNI 0000 0001 0668 7884, GRID grid.5596.f, Department of Mechanical Engineering, , KU Leuven, ; Leuven, Belgium
                [3 ]ISNI 0000 0001 0807 5670, GRID grid.5600.3, School of Healthcare Sciences, , Cardiff University, ; Cardiff, UK
                Article
                30139
                10.1038/s41598-018-30139-9
                6076241
                30076327
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized

                Comments

                Comment on this article