7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Moving On from the Insect Apocalypse Narrative: Engaging with Evidence-Based Insect Conservation

      1 , 1 , 2 , 1
      BioScience
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies showing temporal changes in local and regional insect populations received exaggerated global media coverage. Confusing and inaccurate science communication on this important issue could have counterproductive effects on public support for insect conservation. The insect apocalypse narrative is fuelled by a limited number of studies that are restricted geographically (predominantly the United Kingdom, Europe, the United States) and taxonomically (predominantly some bees, macrolepidoptera, and ground beetles). Biases in sampling and analytical methods (e.g., categorical versus continuous time series, different diversity metrics) limit the relevance of these studies as evidence of generalized global insect decline. Rather, the value of this research lies in highlighting important areas for priority investment. We summarize research, communication, and policy priorities for evidence-based insect conservation, including key areas of knowledge to increase understanding of insect population dynamics. Importantly, we advocate for a balanced perspective in science communication to better serve both public and scientific interests.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: found

          Ecological and Evolutionary Responses to Recent Climate Change

          Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Environmental DNA metabarcoding: Transforming how we survey animal and plant communities

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How does climate warming affect plant-pollinator interactions?

              Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.
                Bookmark

                Author and article information

                Journal
                BioScience
                Oxford University Press (OUP)
                0006-3568
                1525-3244
                December 18 2019
                December 18 2019
                Affiliations
                [1 ]University of New England, Armidale, Australia
                [2 ]Vancouver Island University, Vancouver, British Columbia, Canada
                Article
                10.1093/biosci/biz143
                c512595b-2ef5-42aa-82ed-707a19030426
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article