26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterizing Dynamic Changes in the Human Blood Transcriptional Network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene expression data generated systematically in a given system over multiple time points provides a source of perturbation that can be leveraged to infer causal relationships among genes explaining network changes. Previously, we showed that food intake has a large impact on blood gene expression patterns and that these responses, either in terms of gene expression level or gene-gene connectivity, are strongly associated with metabolic diseases. In this study, we explored which genes drive the changes of gene expression patterns in response to time and food intake. We applied the Granger causality test and the dynamic Bayesian network to gene expression data generated from blood samples collected at multiple time points during the course of a day. The simulation result shows that combining many short time series together is as powerful to infer Granger causality as using a single long time series. Using the Granger causality test, we identified genes that were supported as the most likely causal candidates for the coordinated temporal changes in the network. These results show that PER1 is a key regulator of the blood transcriptional network, in which multiple biological processes are under circadian rhythm regulation. The fasted and fed dynamic Bayesian networks showed that over 72% of dynamic connections are self links. Finally, we show that different processes such as inflammation and lipid metabolism, which are disconnected in the static network, become dynamically linked in response to food intake, which would suggest that increasing nutritional load leads to coordinate regulation of these biological processes. In conclusion, our results suggest that food intake has a profound impact on the dynamic co-regulation of multiple biological processes, such as metabolism, immune response, apoptosis and circadian rhythm. The results could have broader implications for the design of studies of disease association and drug response in clinical trials.

          Author Summary

          Peripheral blood is the most readily accessible human tissue for clinical studies and experimental research more generally. Large-scale molecular profiling technologies have enabled measurements of mRNA expression on the scale of whole genomes. Understanding the relationships between human blood gene expression profiles and clinical traits is extremely useful for inferring causal factors for human disease and for studying drug response. Biological pathways and the complex behaviors they induce are not static, but change dynamically in response to external factors such as intake/uptake of nutrients and administration of drugs. We employed a randomized, two-arm cross-over design to assess the effects of fasting and feeding on the dynamic changes of blood transcriptional network. Our work has convincingly shown that feeding or increasing nutritional load affects the human circadian rhythm system which connects to other biological processes including metabolic and immune responses. We believe this is a first step towards a more comprehensive population-based study that seeks to connect changes in the blood transcriptome to drug response, and to disease and biology more generally.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Six new loci associated with body mass index highlight a neuronal influence on body weight regulation.

          Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of gene expression and its effect on disease.

            Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An integrative genomics approach to infer causal associations between gene expression and disease.

              A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene-perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                February 2010
                February 2010
                12 February 2010
                : 6
                : 2
                : e1000671
                Affiliations
                [1 ]Department of Genetics, Rosetta Inpharmatics, LLC, a wholly owned subsidiary of Merck & Co., Inc., Seattle, Washington, United States of America
                [2 ]Molecular Profiling and Research Informatics Department, Merck Research Laboratories, Rahway, New Jersey, United States of America
                University of Tokyo, Japan
                Author notes
                [¤a]

                Current address: Sage Bionetworks, Seattle, Washington, United States of America

                [¤b]

                Current address: The Neurosciences Institute, San Diego, California, United States of America

                [¤c]

                Current address: Pathway Genomics, San Diego, California, United States of America

                [¤d]

                Current address: Pfizer Inc., San Diego, California, United States of America

                [¤e]

                Current address: Pacific Biosciences, Menlo Park, California, United States of America

                Conceived and designed the experiments: JZ YC EES. Analyzed the data: JZ YC. Contributed reagents/materials/analysis tools: JZ YC ASL KW JRL VE. Wrote the paper: JZ YC VE EES.

                Article
                09-PLCB-RA-RD-1120R2
                10.1371/journal.pcbi.1000671
                2820517
                20168994
                c513ac90-5809-4250-b22f-44eef3945b3c
                Zhu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 September 2009
                : 7 January 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Computational Biology/Systems Biology
                Computational Biology/Transcriptional Regulation
                Genetics and Genomics/Population Genetics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article