Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Dietary Ingredients on Lean Body Percent, Uremic Toxin Concentrations, and Kidney Function in Senior-Adult Cats

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The goal of this study was to determine if modification of currently available maintenance foods with alternative ingredients, botanicals (fruit and vegetables), and increased amounts of functional lipids (fish oil) would delay the age-associated decline in glomerular filtration rate (GFR) and lean body mass (LBM) in senior-adult cats. Forty-four healthy cats (mean age, 12.2 years; range 10.7 to 14.0 years) were fed one of three foods ( n = 14 or 15 per group) for six months: control food with 32.6% protein (as fed), or control food supplemented with increasing amounts of functional food bioactives: fish oil, fruit and vegetables, different protein sources, and <32.0% protein [functional foods one (FF1) and two (FF2)]. Senior-adult cats were compared before and after the feeding trial with 20 young-adult cats (mean age, 3.5 years; range 2.1 to 4.9 years). Compared with younger cats, older cats had decreased lean-body percent and serum albumin concentrations. Feeding FF1 and FF2 for six months increased lean-body percent, maintained serum albumin concentrations, increased GFR, decreased serum symmetric dimethylarginine (SDMA) concentrations, and decreased concentrations of the uremic toxin 3-indoxyl sulfate. These dietary changes may assist in offsetting sarcopenia and the chronic inflammation associated with aging in senior-adult cats.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of Serum Concentrations of Symmetric Dimethylarginine and Creatinine as Kidney Function Biomarkers in Cats with Chronic Kidney Disease

          Background Symmetric dimethylarginine (SDMA) has been shown to be an accurate and precise biomarker for calculating estimated glomerular filtration rate (GFR) in humans, as well as a more sensitive biomarker than serum creatinine concentration (sCr) for assessing renal dysfunction. Objectives The purpose of this retrospective study was to report on the utility of measuring serum SDMA concentrations in cats for detection of chronic kidney disease (CKD) before diagnosis by conventional measurement of sCr. Animals Chronic kidney disease cats (n = 21) included those persistently azotemic for ≥3 months (n = 15), nonazotemic cats with GFR >30% decreased from median GFR of normal cats (n = 4), and nonazotemic cats with calcium oxalate kidney stones (n = 2). Healthy geriatric cats (n = 21) were selected from the same colony. Methods Symmetric dimethylarginine concentrations (liquid chromatography‐mass spectroscopy) and sCr (enzymatic colorimetry) were determined retrospectively from historical data or banked serum samples in azotemic cats or at the time GFR (iohexol clearance) was measured in nonazotemic cats. Results Serum SDMA (r = −0.79) and sCr (r = −0.77) concentrations were significantly correlated to GFR (both P < .0001). Symmetric dimethylarginine became increased before sCr in 17/21 cats (mean, 17.0 months; range, 1.5–48 months). Serum SDMA had higher sensitivity (100%) compared with sCr (17%), but lower specificity (91% versus 100%) and positive predictive value (86% versus 100%). Conclusion and Clinical Importance Using serum SDMA as a biomarker for CKD allows earlier detection of CKD in cats compared with sCr, which may be desirable for initiating renoprotective interventions that slow progression of CKD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

            Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutritional influences on epigenetics and age-related disease.

              Nutritional epigenetics has emerged as a novel mechanism underlying gene-diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modulates gene expression without changes in the underlying bp sequence, ultimately determining phenotype from genotype. DNA methylation and post-translational histone modifications are classical levels of epigenetic regulation. Epigenetic phenomena are critical from embryonic development through the aging process, with aberrations in epigenetic patterns emerging as aetiological mechanisms in many age-related diseases such as cancer, CVD and neurodegenerative disorders. Nutrients can act as the source of epigenetic modifications and can regulate the placement of these modifications. Nutrients involved in one-carbon metabolism, namely folate, vitamin B12, vitamin B6, riboflavin, methionine, choline and betaine, are involved in DNA methylation by regulating levels of the universal methyl donor S-adenosylmethionine and methyltransferase inhibitor S-adenosylhomocysteine. Other nutrients and bioactive food components such as retinoic acid, resveratrol, curcumin, sulforaphane and tea polyphenols can modulate epigenetic patterns by altering the levels of S-adenosylmethionine and S-adenosylhomocysteine or directing the enzymes that catalyse DNA methylation and histone modifications. Aging and age-related diseases are associated with profound changes in epigenetic patterns, though it is not yet known whether these changes are programmatic or stochastic in nature. Future work in this field seeks to characterise the epigenetic pattern of healthy aging to ultimately identify nutritional measures to achieve this pattern.
                Bookmark

                Author and article information

                Journal
                Metabolites
                Metabolites
                metabolites
                Metabolites
                MDPI
                2218-1989
                19 October 2019
                October 2019
                : 9
                : 10
                Affiliations
                [1 ]Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, OR 97333-4802, USA
                [2 ]Pet Nutrition Center, Hill’s Pet Nutrition, Topeka, Kansas, KS 66617-1587, USA; matthew_jackson@ 123456hillspet.com (M.I.J.); jewelldj55@ 123456gmail.com (D.E.J.)
                [3 ]IDEXX Laboratories, One IDEXX Drive, Westbrook, ME 04092, USA; giosi-farace@ 123456idexx.com (G.F.); maha-yerramilli@ 123456idexx.com (M.Y.)
                Author notes
                Article
                metabolites-09-00238
                10.3390/metabo9100238
                6836002
                31635090
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article