18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle.

          Spontaneous discharge of norepinephrine-containing locus coeruleus (NE-LC) neurons was examined during the sleep-walking cycle (S-WC) in behaving rats. Single unit and multiple unit extracellular recordings yielded a consistent set of characteristic discharge properties. (1) Tonic discharge co-varied with stages of the S-WC, being highest during waking, lower during slow wave sleep, and virtually absent during paradoxical sleep. (2) Discharge anticipated S-WC stages as well as phasic cortical activity, such as spindles, during slow wave sleep. (3) Discharge decreased within active waking during grooming and sweet water consumption. (4) Bursts of impulses accompanied spontaneous or sensory-evoked interruptions of sleep, grooming, consumption, or other such ongoing behavior. (5) These characteristic discharge properties were topographically homogeneous for recordings throughout the NE-LC. (6) Phasic robust activity was synchronized markedly among neurons in multiple unit populations. (7) Field potentials occurred spontaneously in the NE-LC and were synchronized with bursts of unit activity from the same electrodes. (8) Field potentials became dissociated from unit activity during paradoxical sleep, exhibiting their highest rates in the virtual absence of impulses. These results are generally consistent with previous proposals that the NE-LC system is involved in regulating cortical and behavioral arousal. On the basis of the present data and those described in the following report (Aston-Jones, G., and F. E. Bloom (1981) J. Neurosci.1: 887-900), we conclude that these neurons may mediate a specific function within the general arousal framework. In brief, the NE-LC system may globally bias the responsiveness of target neurons and thereby influence overall behavioral orientation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A putative flip-flop switch for control of REM sleep.

            Rapid eye movement (REM) sleep consists of a dreaming state in which there is activation of the cortical and hippocampal electroencephalogram (EEG), rapid eye movements, and loss of muscle tone. Although REM sleep was discovered more than 50 years ago, the neuronal circuits responsible for switching between REM and non-REM (NREM) sleep remain poorly understood. Here we propose a brainstem flip-flop switch, consisting of mutually inhibitory REM-off and REM-on areas in the mesopontine tegmentum. Each side contains GABA (gamma-aminobutyric acid)-ergic neurons that heavily innervate the other. The REM-on area also contains two populations of glutamatergic neurons. One set projects to the basal forebrain and regulates EEG components of REM sleep, whereas the other projects to the medulla and spinal cord and regulates atonia during REM sleep. The mutually inhibitory interactions of the REM-on and REM-off areas may form a flip-flop switch that sharpens state transitions and makes them vulnerable to sudden, unwanted transitions-for example, in narcolepsy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hippocampal atrophy in recurrent major depression.

              Hippocampal volumes of subjects with a history of major depressive episodes but currently in remission and with no known medical comorbidity were compared to matched normal controls by using volumetric magnetic resonance images. Subjects with a history of major depression had significantly smaller left and right hippocampal volumes with no differences in total cerebral volumes. The degree of hippocampal volume reduction correlated with total duration of major depression. In addition, large (diameter > or = 4.5 mm)-hippocampal low signal foci (LSF) were found within the hippocampus, and their number also correlated with the total number of days depressed. These results suggest that depression is associated with hippocampal atrophy, perhaps due to a progressive process mediated by glucocorticoid neurotoxicity.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                July 2015
                July 2015
                : 13
                : 4
                : 543-553
                Affiliations
                [1 ]Department of Pharmacology, Shanghai Key Laboratory of Bioactive Small Molecules, and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences;
                [2 ]Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
                Author notes
                [* ]Address correspondence to these authors at the Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Tel: +86 21 54237043; Fax: +86 21 54237103; E-mail: huangzl@ 123456fudan.edu.cn or quweimin@ 123456fudan.edu.cn
                Article
                CN-13-543
                10.2174/1570159X13666150310002540
                4790401
                26412074
                c519e88e-a80b-44e5-abe1-c04bb5e30925
                ©2015 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 11 July 2014
                : 11 January 2015
                : 25 January 2015
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                antidepressants,depression,mood disorders,norepinephrine,serotonin,sleep disorders.

                Comments

                Comment on this article