47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mixing patterns in networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study assortative mixing in networks, the tendency for vertices in networks to be connected to other vertices that are like (or unlike) them in some way. We consider mixing according to discrete characteristics such as language or race in social networks and scalar characteristics such as age. As a special example of the latter we consider mixing according to vertex degree, i.e., according to the number of connections vertices have to other vertices: do gregarious people tend to associate with other gregarious people? We propose a number of measures of assortative mixing appropriate to the various mixing types, and apply them to a variety of real-world networks, showing that assortative mixing is a pervasive phenomenon found in many networks. We also propose several models of assortatively mixed networks, both analytic ones based on generating function methods, and numerical ones based on Monte Carlo graph generation techniques. We use these models to probe the properties of networks as their level of assortativity is varied. In the particular case of mixing by degree, we find strong variation with assortativity in the connectivity of the network and in the resilience of the network to the removal of vertices.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical mechanics of complex networks

            Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Community structure in social and biological networks

              A number of recent studies have focused on the statistical properties of networked systems such as social networks and the World-Wide Web. Researchers have concentrated particularly on a few properties which seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this paper, we highlight another property which is found in many networks, the property of community structure, in which network nodes are joined together in tightly-knit groups between which there are only looser connections. We propose a new method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer generated and real-world graphs whose community structure is already known, and find that it detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well-known - a collaboration network and a food web - and find that it detects significant and informative community divisions in both cases.
                Bookmark

                Author and article information

                Journal
                19 September 2002
                2003-02-04
                Article
                10.1103/PhysRevE.67.026126
                cond-mat/0209450
                c51c31a7-b62b-4107-9409-3d1de38df293
                History
                Custom metadata
                Phys. Rev. E 67, 026126 (2003)
                14 pages, 2 tables, 4 figures, some additions and corrections in this version
                cond-mat.stat-mech cond-mat.dis-nn

                Comments

                Comment on this article