57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Task-Based Core-Periphery Organization of Human Brain Dynamics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.

          Author Summary

          When someone learns a new skill, his/her brain dynamically alters individual synapses, regional activity, and larger-scale circuits. In this paper, we capture some of these dynamics by measuring and characterizing patterns of coherent brain activity during the learning of a motor skill. We extract time-evolving communities from these patterns and find that a temporal core that is composed primarily of primary sensorimotor and visual regions reconfigures little over time, whereas a periphery that is composed primarily of multimodal association regions reconfigures frequently. The core consists of densely connected nodes, and the periphery consists of sparsely connected nodes. Individual participants with a larger separation between core and periphery learn better in subsequent training sessions than individuals with a smaller separation. Conceptually, core-periphery organization provides a framework in which to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modularity and community structure in networks

          M. Newman (2006)
          Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rich-club organization of the human connectome.

            The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these "brain hubs" is underscored by recent studies showing that disturbances of their structural and functional connectivity profile are linked to neuropathology. This study aims to map out both the subcortical and neocortical hubs of the brain and examine their mutual relationship, particularly their structural linkages. Here, we demonstrate that brain hubs form a so-called "rich club," characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network. Whole-brain structural networks of 21 subjects were reconstructed using diffusion tensor imaging data. Examining the connectivity profile of these networks revealed a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen, and thalamus. Importantly, these hub regions were found to be more densely interconnected than would be expected based solely on their degree, together forming a rich club. We discuss the potential functional implications of the rich-club organization of the human connectome, particularly in light of its role in information integration and in conferring robustness to its structural core.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small-world brain networks.

              Many complex networks have a small-world topology characterized by dense local clustering or cliquishness of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connections. This is an attractive model for the organization of brain anatomical and functional networks because a small-world topology can support both segregated/specialized and distributed/integrated information processing. Moreover, small-world networks are economical, tending to minimize wiring costs while supporting high dynamical complexity. The authors introduce some of the key mathematical concepts in graph theory required for small-world analysis and review how these methods have been applied to quantification of cortical connectivity matrices derived from anatomical tract-tracing studies in the macaque monkey and the cat. The evolution of small-world networks is discussed in terms of a selection pressure to deliver cost-effective information-processing systems. The authors illustrate how these techniques and concepts are increasingly being applied to the analysis of human brain functional networks derived from electroencephalography/magnetoencephalography and fMRI experiments. Finally, the authors consider the relevance of small-world models for understanding the emergence of complex behaviors and the resilience of brain systems to pathological attack by disease or aberrant development. They conclude that small-world models provide a powerful and versatile approach to understanding the structure and function of human brain systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2013
                September 2013
                26 September 2013
                : 9
                : 9
                : e1003171
                Affiliations
                [1 ]Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
                [2 ]Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, California, United States of America
                [3 ]Department of Psychological and Brain Sciences and UCSB Brain Imaging Center, University of California, Santa Barbara, Santa Barbara, California, United States of America
                [4 ]Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom
                [5 ]CABDyN Complexity Centre, University of Oxford, Oxford, United Kingdom
                [6 ]Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [7 ]Institute for Advanced Materials, Nanoscience & Technology, University of North Carolina, Chapel Hill, North Carolina, United States of America
                Indiana University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NFW STG. Performed the experiments: NFW STG. Analyzed the data: DSB NFW MPR. Contributed reagents/materials/analysis tools: DSB NFW MPR MAP PJM STG. Wrote the paper: DSB NFW MPR MAP PJM STG.

                Article
                PCOMPBIOL-D-13-00302
                10.1371/journal.pcbi.1003171
                3784512
                24086116
                c53c7b7c-e539-40cb-bdf2-04f91d8645fa
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 February 2013
                : 21 June 2013
                Page count
                Pages: 16
                Funding
                DSB was supported by the Sage Center for the Study of the Mind, the Errett Fisher Foundation, the Templeton Foundation, the David and Lucile Packard Foundation, the Public Health Service Grant NS44393, and the Institute for Collaborative Biotechnologies through Contract W911NF-09-D-0001 from the US Army Research Office. MAP and MPR acknowledge a research award (#220020177) from the James S. McDonnell Foundation. MAP was also funded by FET Proactive Project PLEXMATH (FP7-ICT-2011-8; Grant #317614) from the European Commission as well as by the EPSRC (EP/J001759/1). PJM acknowledges support from Award Number R21GM099493 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article