104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Refined Model of the Prototypical Salmonella SPI-1 T3SS Basal Body Reveals the Molecular Basis for Its Assembly

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a “basal body”, a lock-nut structure spanning both bacterial membranes, and a “needle” that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism.

          Author Summary

          Gram-negative bacteria such as E. coli, Salmonella, Shigella, Pseudomonas aeruginosa, and Yersinia pestis are responsible for a wide range of diseases, from pneumonia to lethal diarrhea and plague. A common trait shared by these bacteria is their capacity to inject toxins directly inside the cells of infected individuals, thanks to a syringe-shaped “nano-machine” called the Type III Secretion System injectisome. These toxins lead to modifications of the host cell, allowing the bacteria to replicate efficiently and/or to evade the immune system, and are necessary to establish an infection. As a consequence, the injectisome is an important potential target for the development of novel therapeutics against bacterial infection. In this study, we focus on the basal body, an essential region of the injectisome that forms the continuous hollow channel across both membranes of the bacteria. We have used an array of biophysical methods to obtain an atomic model of the basal body. This model provides new insights as to how the basal body assembles at the surface of bacteria, and could be used for the design of novel antibiotics.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          An introduction to data reduction: space-group determination, scaling and intensity statistics

          1. Introduction Estimates of integrated intensities from X-ray diffraction images are not generally suitable for immediate use in structure determination. Theoretically, the measured intensity I h of a reflection h is proportional to the square of the underlying structure factor |F h |2, which is the quantity that we want, with an associated measurement error, but systematic effects of the diffraction experiment break this proportionality. Such systematic effects include changes in the beam intensity, changes in the exposed volume of the crystal, radiation damage, bad areas of the detector and physical obstruction of the detector (e.g. by the backstop or cryostream). If data from different crystals (or different sweeps of the same crystal) are being merged, corrections must also be applied for changes in exposure time and rotation rate. In order to infer |F h |2 from I h , we need to put the measured intensities on the same scale by modelling the experiment and inverting its effects. This is generally performed in a scaling process that makes the data internally consistent by adjusting the scaling model to minimize the difference between symmetry-related observations. This process requires us to know the point-group symmetry of the diffraction pattern, so we need to determine this symmetry prior to scaling. The scaling process produces an estimate of the intensity of each unique reflection by averaging over all of the corrected intensities, together with an estimate of its error σ(I h ). The final stage in data reduction is estimation of the structure amplitude |F h | from the intensity, which is approximately I h 1/2 (but with a skewing factor for intensities that are below or close to background noise, e.g. ‘negative’ intensities); at the same time, the intensity statistics can be examined to detect pathologies such as twinning. This paper presents a brief overview of how to run CCP4 programs for data reduction through the CCP4 graphical interface ccp4i and points out some issues that need to be considered. No attempt is made to be comprehensive nor to provide full references for everything. Automated pipelines such as xia2 (Winter, 2010 ▶) are often useful and generally work well, but sometimes in difficult cases finer control is needed. In the current version of ccp4i (CCP4 release 6.1.3) the ‘Data Reduction’ module contains two major relevant tasks: ‘Find or Match Laue Group’, which determines the crystal symmetry, and ‘Scale and Merge Intensities’, which outputs a file containing averaged structure amplitudes. Future GUI versions may combine these steps into a simplified interface. Much of the advice given here is also present in the CCP4 wiki (http://www.ccp4wiki.org/). 2. Space-group determination The true space group is only a hypo­thesis until the structure has been solved, since it can be hard to distinguish between exact crystallographic symmetry and approximate noncrystallographic symmetry. However, it is useful to find the likely symmetry early on in the structure-determination pipeline, since it is required for scaling and indeed may affect the data-collection strategy. The program POINTLESS (Evans, 2006 ▶) examines the symmetry of the diffraction pattern and scores the possible crystallographic symmetry. Indexing in the integration program (e.g. MOSFLM) only indicates the lattice symmetry, i.e. the geometry of the lattice giving constraints on the cell dimensions (e.g. α = β = γ = 90° for an orthorhombic lattice), but such relationships can arise accidentally and may not reflect the true symmetry. For example, a primitive hexagonal lattice may belong to point groups 3, 321, 312, 6, 622 or indeed lower symmetry (C222, 2 or 1). A rotational axis of symmetry produces identical true intensities for reflections related by that axis, so examination of the observed symmetry in the diffraction pattern allows us to determine the likely point group and hence the Laue group (a point group with added Friedel symmetry) and the Patterson group (with any lattice centring): note that the Patterson group is labelled ‘Laue group’ in the output from POINTLESS. Translational symmetry operators that define the space group (e.g. the distinction between a pure dyad and a screw dyad) are only visible in the observed diffraction pattern as systematic absences, along the principal axes for screws, and these are less reliable indicators since there are relatively few axial reflections in a full three-dimensional data set and some of these may be unrecorded. The protocol for determination of space group in POINTLESS is as follows. (i) From the unit-cell dimensions and lattice centring, find the highest compatible lattice symmetry within some tolerance, ignoring any input symmetry information. (ii) Score each potential rotational symmetry element belonging to the lattice symmetry using all pairs of observations related by that element. (iii) Score combinations of symmetry elements for all possible subgroups of the lattice-symmetry group (Laue or Patterson groups). (iv) Score possible space groups from axial systematic absences (the space group is not needed for scaling but is required later for structure solution). (v) Scores for rotational symmetry operations are based on correlation coefficients rather than R factors, since they are less dependent on the unknown scales. A probability is estimated from the correlation coefficient, using equivalent-size samples of unrelated observations to estimate the width of the probability distribution (see Appendix A ). 2.1. A simple example POINTLESS may be run from the ‘Data Reduction’ module of ccp4i with the task ‘Find or Match Laue Group’ or from the ‘QuickSymm’ option of the iMOSFLM interface (Battye et al., 2011 ▶). Unless the space group is known from previous crystals, the appropriate major option is ‘Determine Laue group’. To use this, fill in the boxes for the title, the input and output file names and the project, crystal and data-set names (if not already set in MOSFLM). Table 1 ▶ shows the results for a straightforward example in space group P212121. Table 1 ▶(a) shows the scores for the three possible dyad axes in the orthorhombic lattice, all of which are clearly present. Combining these (Table 1 ▶ b) shows that the Laue group is mmm with a primitive lattice, Patterson group Pmmm. Fourier analysis of systematic absences along the three principal axes shows that all three have alternating strong (even) and weak (odd) intensities (Fig. 1 ▶ and Table 1 ▶ c), so are likely to be screw axes, implying that the space group is P212121. However, there are only three h00 reflections recorded along the a* axis, so confidence in the space-group assignment is not as high as the confidence in the Laue-group assignment (Table 1 ▶ d). With so few observations along this axis, it is impossible to be confident that P212121 is the true space group rather than P22121. 2.2. A pseudo-cubic example Table 2 ▶ shows the scores for individual symmetry elements for a pseudo-cubic case with a ≃ b ≃ c. It is clear that only the orthorhombic symmetry elements are present: these are the high-scoring elements marked ‘***’. Neither the fourfolds characteristic of tetragonal groups nor the body-diagonal threefolds (along 111 etc.) characteristic of cubic groups are present. The joint probability score for the Laue group Pmmm is 0.989. The suggested solution (not shown) interchanges k and l to make a 1 if the anomalous differences are on average greater than their error. Another way of detecting a significant anomalous signal is to compare the two estimates of ΔI anom from random half data sets, ΔI 1 and ΔI 2 (provided there are at least two measurements of each, i.e. a multiplicity of roughly 4). Figs. 5 ▶(b) and 5 ▶(f) show the correlation coefficient between ΔI 1 and ΔI 2 as a function of resolution: Fig. 5 ▶(f) shows little statistically significance beyond about 4.5 Å resolution. Figs. 5 ▶(c) and 5 ▶(g) show scatter plots of ΔI 1 against ΔI 2: this plot is elongated along the diagonal if there is a large anomalous signal and this can be quantitated as the ‘r.m.s. correlation ratio’, which is defined as (root-mean-square deviation along the diagonal)/(root-mean-square deviation perpendicular to the diagonal) and is shown as a function of resolution in Figs. 5 ▶(d) and 5 ▶(h). The plots against resolution give a suggestion of where the data might be cut for substructure determination, but it is important to note that useful albeit weak phase information extends well beyond the point at which these statistics show a significant signal. 5. Estimation of amplitude |F| from intensity I If we knew the true intensity J we could just take the square root, |F| = J 1/2. However, measured intensities have an error, so a weak intensity may well be measured as negative (i.e. below background); indeed, multiple measurements of a true intensity of zero should be equally positive and negative. This is one reason why when possible it is better to use I rather than |F| in structure determination and refinement. The ‘best’ (most likely) estimate of |F| is larger than I 1/2 for weak intensities, since we know |F| > 0, but |F| = I 1/2 is a good estimate for stronger intensities, roughly those with I > 3σ(I). The programs TRUNCATE and its newer version CTRUNCATE estimate |F| from I and σ(I) as where the prior probability of the true intensity p(J) is estimated from the average intensity in the same resolution range (French & Wilson, 1978 ▶). 6. Intensity statistics and crystal pathologies At the end stage of data reduction, after scaling and merging, the distribution of intensities and its variation with resolution can indicate problems with the data, notably twinning (see, for example, Lebedev et al., 2006 ▶; Zwart et al., 2008 ▶). The simplest expected intensity statistics as a function of resolution s = sinθ/λ arise from assuming that atoms are randomly placed in the unit cell, in which case 〈I〉(s) = 〈FF*〉(s) = g(j, s)2, where g(j, s) is the scattering from the jth atom at resolution s. This average intensity falls off with resolution mainly because of atomic motions (B factors). If all atoms were equal and had equal B factors, then 〈I〉(s) = Cexp(−2Bs 2) and the ‘Wilson plot’ of log[〈I〉(s)] against s 2 would be a straight line of slope −2B. The Wilson plot for proteins shows peaks at ∼10 and 4 Å and a dip at ∼6 Å arising from the distribution of inter­atomic spacings in polypeptides (fewer atoms 6 Å apart than 4 Å apart), but the slope at higher resolution does give an indication of the average B factor and an unusual shape can indicate a problem (e.g. 〈I〉 increasing at the outer limit, spuriously large 〈I〉 owing to ice rings etc.). For detection of crystal pathologies we are not so interested in resolution dependence, so we can use normalized intensities Z = I/〈I〉(s) ≃ |E|2 which are independent of resolution and should ideally be corrected for anisotropy (as is performed in CTRUNCATE). Two useful statistics on Z are plotted by CTRUNCATE: the moments of Z as a function of resolution and its cumulative distribution. While 〈Z〉(s) = 1.0 by definition, its second moment 〈Z 2〉(s) (equivalent to the fourth moment of E) is >1.0 and is larger if the distribution of Z is wider. The ideal value of 〈E 4〉 is 2.0, but it will be smaller for the narrower intensity distribution from a merohedral twin (too few weak reflections), equal to 1.5 for a perfect twin and larger if there are too many weak reflections, e.g. from a noncrystallographic translation which leads to a whole class of reflections being weak. The cumulative distribution plot of N(z), the fraction of reflections with Z |L| and N(|L|) = |L|(3 − L 2)/2 for a perfect twin. This test seems to be largely unaffected by anisotropy or translational non­crystallographic symmetry which may affect tests on Z. The calculation of Z = I/〈I〉(s) depends on using a suitable value for I/〈I〉(s) and noncrystallographic translations or uncorrected anisotropy lead to the use of an inappropriate value for 〈I〉(s). These statistical tests are all unweighted, so it may be better to exclude weak high-resolution data or to examine the resolution dependence of, for example, the moments of Z (or possibly L). It is also worth noting that fewer weak reflections than expected may arise from unresolved closely spaced spots along a long real-space axis, so that weak reflections are contaminated by neighbouring strong reflections, thus mimicking the effect of twinning. 7. Summary: questions and decisions In the process of data reduction, a number of decisions need to be taken either by the programs or by the user. The main questions and con­siderations are as follows. (i) What is the point group or Laue group? This is usually unambiguous, but pseudosymmetry may confuse the programs and the user. Close examination of the scores for individual symmetry elements from POINTLESS may suggest lower symmetry groups to try. (ii) What is the space group? Distinction between screw axes and pure rotations from axial systematic absences is often unreliable and it is generally a good idea to try all the likely space groups (consistent with the Laue group) in the key structure-solution step: either molecular-replacement searches or substructure searches in experimental phasing. For example, in a primitive orthorhombic system the eight possible groups P2 x 2 x 2 x should be tried. This has the added advantage of providing some negative controls on the success of the structure solution. (iii) Is there radiation damage: should data collected after the crystal has had a high dose of radiation be ignored (possibly at the expense of resolution)? Cutting back data from the end may reduce completeness and the optimum trade-off is hard to choose. (iv) What is the best resolution cutoff? An appropriate choice of resolution cutoff is difficult and sometimes seems to be performed mainly to satisfy referees. On the one hand, cutting back too far risks excluding data that do contain some useful information. On the other hand, extending the resolution further makes all statistics look worse and may in the end degrade maps. The choice is perhaps not as important as is sometimes thought: maps calculated with slightly different resolution cutoffs are almost indistinguishable. (v) Is there an anomalous signal detectable in the intensity statistics? Note that a weak anomalous signal may still be useful even if it is not detectable in the statistics. The statistics do give a good guide to a suitable resolution limit for location of the substructure, but the whole resolution range should be used in phasing. (vi) Are the data twinned? Highly twinned data sets can be solved by molecular replacement and refined, but probably not solved, by experimental phasing methods. Partially twinned data sets can often be solved by ignoring the twinning and then refined as a twin. (vii) Is this data set better or worse than those previously collected? One of the best things to do with a bad data set is to throw it away in favour of a better one. With modern synchrotrons, data collection is so fast that we usually have the freedom to collect data from several equivalent crystals and choose the best. In most cases the data-reduction process is straightforward, but in difficult cases critical examination of the results may make the difference between solving and not solving the structure.
            • Record: found
            • Abstract: found
            • Article: not found

            ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins.

            The fortran program ESPript was created in 1993, to display on a PostScript figure multiple sequence alignments adorned with secondary structure elements. A web server was made available in 1999 and ESPript has been linked to three major web tools: ProDom which identifies protein domains, PredictProtein which predicts secondary structure elements and NPS@ which runs sequence alignment programs. A web server named ENDscript was created in 2002 to facilitate the generation of ESPript figures containing a large amount of information. ENDscript uses programs such as BLAST, Clustal and PHYLODENDRON to work on protein sequences and such as DSSP, CNS and MOLSCRIPT to work on protein coordinates. It enables the creation, from a single Protein Data Bank identifier, of a multiple sequence alignment figure adorned with secondary structure elements of each sequence of known 3D structure. Similar 3D structures are superimposed in turn with the program PROFIT and a final figure is drawn with BOBSCRIPT, which shows sequence and structure conservation along the Calpha trace of the query. ESPript and ENDscript are available at http://genopole.toulouse.inra.fr/ESPript.
              • Record: found
              • Abstract: found
              • Article: not found

              Protein structure prediction and structural genomics.

              D Baker, A Sali (2001)
              Genome sequencing projects are producing linear amino acid sequences, but full understanding of the biological role of these proteins will require knowledge of their structure and function. Although experimental structure determination methods are providing high-resolution structure information about a subset of the proteins, computational structure prediction methods will provide valuable information for the large fraction of sequences whose structures will not be determined experimentally. The first class of protein structure prediction methods, including threading and comparative modeling, rely on detectable similarity spanning most of the modeled sequence and at least one known structure. The second class of methods, de novo or ab initio methods, predict the structure from sequence alone, without relying on similarity at the fold level between the modeled sequence and any of the known structures. In this Viewpoint, we begin by describing the essential features of the methods, the accuracy of the models, and their application to the prediction and understanding of protein function, both for single proteins and on the scale of whole genomes. We then discuss the important role that protein structure prediction methods play in the growing worldwide effort in structural genomics.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2013
                April 2013
                25 April 2013
                : 9
                : 4
                : e1003307
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
                [2 ]Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
                [3 ]Department of Microbiology, University of Washington, Seattle, Washington, United States of America
                [4 ]Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
                [5 ]Department of Medicine, University of Washington, Seattle, Washington, United States of America
                [6 ]Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
                Osaka University, Japan
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JRCB LJW NGS DB NCJS. Performed the experiments: JRCB LJW NGS FDM RAP HBF MV ACY. Analyzed the data: JRCB LJW NGS DB NCJS. Contributed reagents/materials/analysis tools: SIM. Wrote the paper: JRCB LJW NGS DB NCJS.

                [¤a]

                Current address: Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.

                [¤b]

                Current address: Department of Biological Sciences, Moravian College, Bethlehem, Pennsylvania, United States of America.

                Article
                PPATHOGENS-D-12-02367
                10.1371/journal.ppat.1003307
                3635987
                23633951
                c5439e1f-bfde-475e-a081-31d8f8a5fdc3
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 September 2012
                : 2 March 2013
                Page count
                Pages: 12
                Funding
                LJW is a CIHR postdoctoral fellow. NCJS is a Canada Research Chair Tier 1 in Antibiotic Discovery and a CCA Killam Fellow. This work was supported by operating grants from the Canadian Institute of Health Research and HHMI International Scholar Program (to NCJS). Work by NS and DB was supported by grants P41 RR11823 from the National Center for Research Resources and P41 GM103533 from the National Institute of General Medical Studies from the National Institutes of Health. We also thank the Canadian Foundation of Innovation and the BCKDF for infrastructure funding (to NCJS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Protein Structure
                Macromolecular Assemblies
                Microbiology
                Bacterial Pathogens
                Salmonella
                Host-Pathogen Interaction

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article

                Related Documents Log