4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of rapid evolution on species coexistence

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing evidence for rapid evolution suggests that the maintenance of species diversity in ecological communities may be influenced by more than purely ecological processes. Classic theory shows that interspecific competition may select for traits that increase niche differentiation, weakening competition and thus promoting species coexistence. While empirical work has demonstrated trait evolution in response to competition, if and how evolution affects the dynamics of the competing species—the key step for completing the required eco-evolutionary feedback—has been difficult to resolve. Here, we show that evolution in response to interspecific competition feeds back to change the course of competitive population dynamics of aquatic plant species over 10–15 generations in the field. By manipulating selection imposed by heterospecific competitors in experimental ponds, we demonstrate that ( i) interspecific competition drives rapid genotypic change, and ( ii) this evolutionary change in one competitor, while not changing the coexistence outcome, causes the population trajectories of the two competing species to converge. In contrast to the common expectation that interspecific competition should drive the evolution of niche differentiation, our results suggest that genotypic evolution resulted in phenotypic changes that altered population dynamics by affecting the competitive hierarchy. This result is consistent with theory suggesting that competition for essential resources can limit opportunities for the evolution of niche differentiation. Our finding that rapid evolution regulates the dynamics of competing species suggests that ecosystems may rely on continuous feedbacks between ecology and evolution to maintain species diversity.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: not found
          • Article: not found

          The Paradox of the Plankton

           G. Hutchinson (1961)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A niche for neutrality.

            Ecologists now recognize that controversy over the relative importance of niches and neutrality cannot be resolved by analyzing species abundance patterns. Here, we use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality). The neutral model is a special case where stabilizing mechanisms are absent and species have equivalent fitness. Instead of asking whether niches or neutral processes structure communities, we advocate determining the degree to which observed diversity reflects strong stabilizing mechanisms overcoming large fitness differences or weak stabilization operating on species of similar fitness. To answer this question, we propose combining data on per capita growth rates with models to: (i) quantify the strength of stabilizing processes; (ii) quantify fitness inequality and compare it with stabilization; and (iii) manipulate frequency dependence in growth to test the consequences of stabilization and fitness equivalence for coexistence.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ecological and community-wide character displacement: the next generation

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 18 2019
                : 201816298
                Article
                10.1073/pnas.1816298116
                6369787
                30659157
                © 2019

                Comments

                Comment on this article