6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A critical review on semitransparent organic solar cells

      , , , , , , , ,
      Nano Energy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: not found
          • Article: not found

          Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An electron acceptor challenging fullerenes for efficient polymer solar cells.

            A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion efficiencies of up to 6.8%, a record for fullerene-free PSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roll-to-roll production of 30-inch graphene films for transparent electrodes.

              The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nano Energy
                Nano Energy
                Elsevier BV
                22112855
                December 2020
                December 2020
                : 78
                : 105376
                Article
                10.1016/j.nanoen.2020.105376
                c556cf66-9767-46c6-a280-bde59c84d3e9
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article