34
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinicopathological significance and potential drug target of CDH1 in breast cancer: a meta-analysis and literature review

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CDH1, as a tumor suppressor gene, contributes sporadic breast cancer (BC) progression. However, the association between CDH1 hypermethylation and BC, and its clinicopathological significance remains unclear. We conducted a meta-analysis to investigate the relationship between the CDH1 methylation profile and the major clinicopathological features. A detailed literature was searched through the electronic databases PubMed, Web of Science™, and EMBASE™ for related research publications. The data were extracted and assessed by two reviewers independently. Odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated and summarized respectively. The frequency of CDH1 methylation was significantly higher in invasive ductal carcinoma than in normal breast tissues (OR =5.83, 95% CI 3.76–9.03, P<0.00001). CDH1 hypermethylation was significantly higher in estrogen receptor (ER)-negative BC than in ER-positive BC (OR =0.62, 95% CI 0.43–0.87, P=0.007). In addition, we found that the CDH1 was significantly methylated in HER2-negative BC than in HER2-positive BC (OR =0.26, 95% CI 0.15–0.44, P<0.00001). However, CDH1 methylation frequency was not associated with progesterone receptor (PR) status, or with grades, stages, or lymph node metastasis of BC patients. Our results indicate that CDH1 hypermethylation is a potential novel drug target for developing personalized therapy. CDH1 hypermethylation is strongly associated with ER-negative and HER2-negative BC, respectively, suggesting CDH1 methylation status could contribute to the development of novel therapeutic approaches for the treatment of ER-negative or HER2-negative BC with aggressive tumor biology.

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Convergence of Wnt, beta-catenin, and cadherin pathways.

          W Nelson (2004)
          The specification and proper arrangements of new cell types during tissue differentiation require the coordinated regulation of gene expression and precise interactions between neighboring cells. Of the many growth factors involved in these events, Wnts are particularly interesting regulators, because a key component of their signaling pathway, beta-catenin, also functions as a component of the cadherin complex, which controls cell-cell adhesion and influences cell migration. Here, we assemble evidence of possible interrelations between Wnt and other growth factor signaling, beta-catenin functions, and cadherin-mediated adhesion.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cell adhesion and signalling by cadherins and Ig-CAMs in cancer.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              β-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation.

              Aberrant β-catenin expression as determined by assessment of its subcellular localization constitutes a surrogate marker of Wnt signalling pathway activation and has been reported in a subset of breast cancers. The association of β-catenin/Wnt pathway activation with clinical outcome and the mechanisms leading to its activation in breast cancers still remain a matter of controversy. The aims of this study were to address the distribution of β-catenin expression in invasive breast cancers, the correlations between β-catenin expression and clinicopathological features and survival of breast cancer patients, and to determine whether aberrant β-catenin expression is driven by CTNNB1 (β-catenin encoding gene) activating mutations. Immunohistochemistry was performed on a tissue microarray containing 245 invasive breast carcinomas from uniformly treated patients, using two anti-β-catenin monoclonal antibodies. Selected samples were subjected to CTNNB1 exon 3 mutation analysis by direct gene sequencing. A good correlation between the two β-catenin antibodies was observed (Spearman's r >0.62, P<0.001). Respectively, 31 and 11% of the cases displayed lack/reduction of β-catenin membranous expression and nuclear accumulation. Complete lack of β-catenin expression was significantly associated with invasive lobular carcinoma histological type. Subgroup analysis of non-lobular cancers or non-lobular grade 3 carcinomas revealed that lack/reduction of β-catenin membranous expression and/or nuclear accumulation were significantly associated with oestrogen receptor negativity, absence of HER2 gene amplification and overexpression, lack/reduction of E-cadherin expression and tumours of triple-negative and basal-like phenotype. Univariate survival analysis revealed a significant association between β-catenin nuclear expression and shorter metastasis-free and overall survival in the whole cohort; however, β-catenin nuclear expression was not an independent predictor of outcome in multivariate analysis. No CTNNB1 mutations were identified in the 28 selected breast carcinomas analysed. In conclusion, β-catenin/Wnt pathway activation is preferentially found in triple-negative/basal-like breast carcinomas, is associated with poor clinical outcome and is unlikely to be driven by CTNNB1 mutations in breast cancer.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                18 September 2015
                : 9
                : 5277-5285
                Affiliations
                Department of Occupational and Environmental Health, School of Public Health, Central South University, Changsha, Hunan, People’s Republic of China
                Author notes
                Correspondence: Fei Yang, Department of Occupational and Environmental Health, School of Public Health, Central South University, 238 MaYuanLing Lane, Kaifu District, Changsha, Hunan 410083, People’s Republic of China, Email feiyang20166@ 123456yeah.net
                [*]

                All authors contributed equally to this work

                Article
                dddt-9-5277
                10.2147/DDDT.S86929
                4583122
                26425077
                c58152bc-14ce-4bbb-8e39-bb82e3c82d94
                © 2015 Huang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                methylation,estrogen receptor,her2,triple-negative breast cancer

                Comments

                Comment on this article