38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cause of Huntington's disease is expansion of polyglutamine (polyQ) domain in huntingtin, which makes this protein both neurotoxic and aggregation prone. Here we developed the first yeast model, which establishes a direct link between aggregation of expanded polyQ domain and its cytotoxicity. Our data indicated that deficiencies in molecular chaperones Sis1 and Hsp104 inhibited seeding of polyQ aggregates, whereas ssa1, ssa2, and ydj1–151 mutations inhibited expansion of aggregates. The latter three mutants strongly suppressed the polyQ toxicity. Spontaneous mutants with suppressed aggregation appeared with high frequency, and in all of them the toxicity was relieved. Aggregation defects in these mutants and in sis1–85 were not complemented in the cross to the hsp104 mutant, demonstrating an unusual type of inheritance. Since Hsp104 is required for prion maintenance in yeast, this suggested a role for prions in polyQ aggregation and toxicity. We screened a set of deletions of nonessential genes coding for known prions and related proteins and found that deletion of the RNQ1 gene specifically suppressed aggregation and toxicity of polyQ. Curing of the prion form of Rnq1 from wild-type cells dramatically suppressed both aggregation and toxicity of polyQ. We concluded that aggregation of polyQ is critical for its toxicity and that Rnq1 in its prion conformation plays an essential role in polyQ aggregation leading to the toxicity.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Aggresomes: A Cellular Response to Misfolded Proteins

          Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo.

            The mechanism by which an elongated polyglutamine sequence causes neurodegeneration in Huntington's disease (HD) is unknown. In this study, we show that the proteolytic cleavage of a GST-huntingtin fusion protein leads to the formation of insoluble high molecular weight protein aggregates only when the polyglutamine expansion is in the pathogenic range. Electron micrographs of these aggregates revealed a fibrillar or ribbon-like morphology, reminiscent of scrapie prions and beta-amyloid fibrils in Alzheimer's disease. Subcellular fractionation and ultrastructural techniques showed the in vivo presence of these structures in the brains of mice transgenic for the HD mutation. Our in vitro model will aid in an eventual understanding of the molecular pathology of HD and the development of preventative strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions.

              The mechanisms by which mutant huntingtin induces neurodegeneration were investigated using a cellular model that recapitulates features of neurodegeneration seen in Huntington's disease. When transfected into cultured striatal neurons, mutant huntingtin induces neurodegeneration by an apoptotic mechanism. Antiapoptotic compounds or neurotrophic factors protected neurons against mutant huntingtin. Blocking nuclear localization of mutant huntingtin suppressed its ability to form intranuclear inclusions and to induce neurodegeneration. However, the presence of inclusions did not correlate with huntingtin-induced death. The exposure of mutant huntingtin-transfected striatal neurons to conditions that suppress the formation of inclusions resulted in an increase in mutant huntingtin-induced death. These findings suggest that mutant huntingtin acts within the nucleus to induce neurodegeneration. However, intranuclear inclusions may reflect a cellular mechanism to protect against huntingtin-induced cell death.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                10 June 2002
                : 157
                : 6
                : 997-1004
                Affiliations
                [1 ]Boston University School of Medicine, Boston, MA 02118
                [2 ]Massachusetts Institute of Technology, Cambridge, MA 02139
                [3 ]School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
                Author notes

                Address correspondence to M.Y. Sherman, Boston University School of Medicine, Dept. of Biochemistry, K323, 715 Albany St., Boston, MA 02118. Tel.: (617) 638-5971. Fax: (617) 638-5339. E-mail: sherman@ 123456biochem.bumc.bu.edu

                Article
                0112104
                10.1083/jcb.200112104
                2174031
                12058016
                c585144c-190c-45fc-9f05-d437ed297b55
                Copyright © 2002, The Rockefeller University Press
                History
                : 20 December 2001
                : 1 April 2002
                : 17 April 2002
                Categories
                Article

                Cell biology
                aggregation; polyglutamine; toxicity; prions; yeast
                Cell biology
                aggregation; polyglutamine; toxicity; prions; yeast

                Comments

                Comment on this article