11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel P300 BCI speller based on the Triple RSVP paradigm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A brain–computer interface (BCI) is an advanced human–machine interaction technology. The BCI speller is a typical application that detects the stimulated source-induced EEG signal to identify the expected characters of the subjects. The current mainstream matrix-based BCI speller involves two problems that remain unsolved, namely, gaze-dependent and space-dependent problems. Some scholars have designed gaze-independent and space-independent spelling systems. However, this system still cannot achieve a satisfactory information transfer rate (ITR). In this paper, we propose a novel triple RSVP speller with gaze-independent and space-independent characteristics and higher ITR. The triple RSVP speller uses rapid serial visual presentation (RSVP) paradigm, each time presents three different characters, and each character is presented three times to increase the ITR. The results of the experiments show the triple RSVP speller online average accuracy of 0.790 and average online ITR of 20.259 bit/min, where the system spelled at a speed of 10 s per character, and the stimulus presentation interface is a 90 × 195 pixel rectangle. Thus, the triple RSVP speller can be integrated into mobile smart devices (such as smartphones, smart watches, and others).

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials

          This paper describes the development and testing of a system whereby one can communicate through a computer by using the P300 component of the event-related brain potential (ERP). Such a system may be used as a communication aid by individuals who cannot use any motor system for communication (e.g., 'locked-in' patients). The 26 letters of the alphabet, together with several other symbols and commands, are displayed on a computer screen which serves as the keyboard or prosthetic device. The subject focuses attention successively on the characters he wishes to communicate. The computer detects the chosen character on-line and in real time. This detection is achieved by repeatedly flashing rows and columns of the matrix. When the elements containing the chosen character are flashed, a P300 is elicited, and it is this P300 that is detected by the computer. We report an analysis of the operating characteristics of the system when used with normal volunteers, who took part in 2 experimental sessions. In the first session (the pilot study/training session) subjects attempted to spell a word and convey it to a voice synthesizer for production. In the second session (the analysis of the operating characteristics of the system) subjects were required simply to attend to individual letters of a word for a specific number of trials while data were recorded for off-line analysis. The analyses suggest that this communication channel can be operated accurately at the rate of 0.20 bits/sec. In other words, under the conditions we used, subjects can communicate 12.0 bits, or 2.3 characters, per min.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evoked-potential correlates of stimulus uncertainty.

            The average evoked-potential waveforms to sound and light stimuli recorded from scalp in awake human subjects show differences as a function of the subject's degree of uncertainty with respect to the sensory modality of the stimulus to be presented. Differences are also found in the evoked potential as a function of whether or not the sensorymodality of the stimulus was anticipated correctly. The major waveform alteration is in the amplitude of a positive-going component which reaches peak amplitude at about 300 milliseconds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The p300: where in the brain is it produced and what does it tell us?

              Intracranial recordings, lesion studies, and the combination of functional imaging with source analysis have produced a solid body of evidence about the generators of the P300 event-related potential. Although it is impossible to square all findings obtained across and within methodologies, a consistent pattern of generators has emerged, with target-related responses in the parietal cortex and the cingulate and novelty-related activations mainly in the inferior parietal and prefrontal regions. Stimulus modality-specific contributions come from the inferior temporal and superior parietal cortex for the visual and from the superior temporal cortex for the auditory modality. The P300 continues to be an important signature of cognitive processes such as attention and working memory and of its dysfunction in neurologic and mental disorders. It is increasingly being investigated as a potential genetic marker of mental disorders. Knowledge about the generators of the P300 will be crucial for a better understanding of its cognitive significance and its continuing clinical application.
                Bookmark

                Author and article information

                Contributors
                ybspace@hotmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 February 2018
                20 February 2018
                2018
                : 8
                : 3350
                Affiliations
                [1 ]China National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China
                [2 ]ISNI 0000 0004 0369 4060, GRID grid.54549.39, Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, , University of Electronic Science and Technology of China, ; Chengdu, China
                Author information
                http://orcid.org/0000-0002-4899-2745
                Article
                21717
                10.1038/s41598-018-21717-y
                5820322
                29463870
                c5879393-a77a-4a9c-860a-73f324551886
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 July 2017
                : 5 February 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article