35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl- D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them. Indeed, in the rat nucleus accumbens (NAc), the function of some AMPA and NMDA receptors present on the dopaminergic and glutamatergic nerve terminals can be regulated negatively or positively in response to a brief activation of nAChRs. This effect occurs rapidly and involves the trafficking of AMPA and NMDA receptors. The event takes place also at very low concentrations of nicotine and involves the activation of several nAChRs subtypes. This dynamic control by cholinergic nicotinic system of glutamatergic NMDA and AMPA receptors might therefore represent an important neuronal presynaptic adaptation associated with nicotine administration. The understanding of the role of these nicotine-induced functional changes might open new and interesting perspectives both in terms of explaining the mechanisms that underlie some of the effects of nicotine addiction and in the development of new drugs for smoking cessation.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system.

          Subtypes of neuronal nicotinic acetylcholine receptors (nAChRs) are constructed from numerous subunit combinations that compose channel-receptor complexes with varied functional and pharmacological characteristics. Structural and functional diversity and the broad presynaptic, postsynaptic, and nonsynaptic locations of nAChRs underlie their mainly modulatory roles throughout the mammalian brain. Presynaptic and preterminal nicotinic receptors enhance neurotransmitter release, postsynaptic nAChRs contribute a small minority of fast excitatory transmission, and nonsynaptic nAChRs modulate many neurotransmitter systems by influencing neuronal excitability. Nicotinic receptors have roles in development and synaptic plasticity, and nicotinic mechanisms participate in learning, memory, and attention. Decline, disruption, or alterations of nicotinic cholinergic mechanisms contribute to dysfunctions such as epilepsy, schizophrenia, Parkinson's disease, autism, dementia with Lewy bodies, Alzheimer's disease, and addiction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Guidelines on nicotine dose selection for in vivo research.

            This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversity in NMDA receptor composition: many regulators, many consequences.

              N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptor, which play a central role in learning, memory, and synaptic development. NMDARs are assembled as tetramers composed of two GluN1 subunits and two GluN2 or GluN3 subunits. Although NMDARs are widely expressed throughout the central nervous system, their number, localization, and subunit composition are strictly regulated and differ in a cell- and synapse-specific manner. The brain area, developmental stage, and level of synaptic activity are some of the factors that regulate NMDARs. Molecular mechanisms that control subunit-specific NMDAR function include developmental regulation of subunit transcription/translation, differential trafficking through the secretory pathway, posttranscriptional modifications such as phosphorylation, and protein-protein interactions. The GluN2A and GluN2B subunits are highly expressed in cortex and hippocampus and confer many of the distinct properties on endogenous NMDARs. Importantly, the synaptic NMDAR subunit composition changes from predominantly GluN2B-containing to GluN2A-containing NMDARs during synaptic maturation and in response to activity and experience. Some of the molecular mechanisms underlying this GluN2 subunit switch have been recently identified. In addition, the balance between synaptic and extrasynaptic NMDARs is altered in several neuronal disorders. Here, the authors summarize the recent advances in the identification of NMDAR subunit-specific regulatory mechanisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                29 April 2015
                2015
                : 6
                : 89
                Affiliations
                [1] 1Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa , Genoa, Italy
                [2] 2Center of Excellence for Biomedical Research, University of Genoa , Genoa, Italy
                Author notes

                Edited by: Ashok Kumar, University of Florida, USA

                Reviewed by: Karthik Bodhinathan, Sanford Burnham Medical Research Institute, USA; Olivier Thibault, University of Kentucky, USA

                *Correspondence: Mario Marchi, Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy, marchi@ 123456pharmatox.unige.it

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology.

                Article
                10.3389/fphar.2015.00089
                4413670
                c58856ad-f13d-4253-8baa-392b03f0c92c
                Copyright © 2015 Marchi, Grilli and Pittaluga.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 March 2015
                : 10 April 2015
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 95, Pages: 10, Words: 7746
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                nicotinic receptors,ampa receptors,nmda receptors,synaptosomes,neurotransmitter release,receptor–receptor interactions,synaptic plasticity

                Comments

                Comment on this article