4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multilayered spraying and gradient dotting of nanodiamond–polycaprolactone guidance channels for restoration of immune homeostasis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The major problem in peripheral nerve repair is restoration of the microenvironment rather than traditional structural reconstruction. Nanodiamonds (NDs), highly biocompatible carbon nanoparticles, are widely applied in medical engineering. They may alleviate inflammatory insults in peripheral nerve injury because they can induce macrophage polarization from a proinflammatory to an anti-inflammatory state. Here we report a concentric multilayered spraying manufacturing process to fabricate microporous ND/polycaprolactone (PCL) nerve bridges. We investigated the proliferative, adhesive, and glioprotective role of these bridges in Schwann cells in vitro. We further evaluated their long-term in vivo performance in a 20-mm sciatic nerve defect rat model. ND/PCL nerve bridges are comparable to autografts in functional, electrophysiological, and morphological sciatic nerve repair. They ameliorate the immune milieu by inducing M1 to M2 macrophage polarization. In addition, they pose no harm to major organs after 4 months of implantation. These findings show the promising roles of ND-based nanotechnology in neuroengineering.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity.

          Diamond nanocrystals emit bright fluorescence at 600-800 nm after irradiation by a 3 MeV proton beam (5 x 1015 ions/cm2) and annealing at 800 degrees C (2 h) in vacuum. The irradiation/annealing process yields high concentrations of nitrogen-vacancy defect centers ( approximately 107 centers/mum3), making possible visualization of the individual 100 nm diamond crystallites using a fluorescence microscope. The fluorescent nanodiamonds (FND) show no sign of photobleaching and can be taken up by mammalian cells with minimal cytotoxicity. The nanomaterial can have far-reaching biological applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monocyte and macrophage plasticity in tissue repair and regeneration.

            Heterogeneity and high versatility are the characteristic features of the cells of monocyte-macrophage lineage. The mononuclear phagocyte system, derived from the bone marrow progenitor cells, is primarily composed of monocytes, macrophages, and dendritic cells. In regenerative tissues, a central role of monocyte-derived macrophages and paracrine factors secreted by these cells is indisputable. Macrophages are highly plastic cells. On the basis of environmental cues and molecular mediators, these cells differentiate to proinflammatory type I macrophage (M1) or anti-inflammatory or proreparative type II macrophage (M2) phenotypes and transdifferentiate into other cell types. Given a central role in tissue repair and regeneration, the review focuses on the heterogeneity of monocytes and macrophages with current known mechanisms of differentiation and plasticity, including microenvironmental cues and molecular mediators, such as noncoding RNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study.

              Carbon nanotubes have distinctive characteristics, but their needle-like fibre shape has been compared to asbestos, raising concerns that widespread use of carbon nanotubes may lead to mesothelioma, cancer of the lining of the lungs caused by exposure to asbestos. Here we show that exposing the mesothelial lining of the body cavity of mice, as a surrogate for the mesothelial lining of the chest cavity, to long multiwalled carbon nanotubes results in asbestos-like, length-dependent, pathogenic behaviour. This includes inflammation and the formation of lesions known as granulomas. This is of considerable importance, because research and business communities continue to invest heavily in carbon nanotubes for a wide range of products under the assumption that they are no more hazardous than graphite. Our results suggest the need for further research and great caution before introducing such products into the market if long-term harm is to be avoided.
                Bookmark

                Author and article information

                Journal
                NPG Asia Materials
                NPG Asia Mater
                Springer Science and Business Media LLC
                1884-4049
                1884-4057
                December 2019
                July 19 2019
                December 2019
                : 11
                : 1
                Article
                10.1038/s41427-019-0136-8
                c58c090b-57f2-4823-b49b-cbc0a4e40591
                © 2019

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article