18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Core Mediator structure at 3.4 Å extends model of transcription initiation complex

      , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC–cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The Mediator complex: a central integrator of transcription.

          The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.

            The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mediator and the mechanism of transcriptional activation.

              Mediator was discovered because of its activity in a yeast RNA polymerase II (pol II) transcription system - it is needed for the system to respond to a transcriptional activator. Mediator is the central link in the enhancer-->activator-->Mediator-->pol II-->promoter pathway. The transduction of regulatory signals through this pathway is crucial for transcription of almost all pol II promoters in all eukaryote organisms.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                May 3 2017
                May 3 2017
                :
                :
                Article
                10.1038/nature22328
                28467824
                c58fef22-1061-4c52-b96c-40024603b9ae
                © 2017
                History

                Comments

                Comment on this article