16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The fate of cholesterol exiting lysosomes.

      The Journal of Biological Chemistry
      Adrenergic Uptake Inhibitors, pharmacology, Androstenes, Animals, Anticholesteremic Agents, Cell Membrane, metabolism, Cholesterol, Cholesterol Esters, Cholesterol, LDL, Endocytosis, Endoplasmic Reticulum, Enzyme Inhibitors, Humans, Hydrolysis, Imipramine, Lysosomes, Male, Progesterone, Rats, Time Factors, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cholesterol released from ingested low density lipoproteins in lysosomes moves both to the plasma membrane and to the endoplasmic reticulum (ER) where it is re-esterified. Whether cholesterol can move directly from lysosomes to ER or first must traverse the plasma membrane has not been established. To examine this question, the endocytic pathway of rat hepatoma cells was loaded at 18 degrees C with low density lipoproteins (LDL) labeled with [3H]cholesteryl linoleate, and the label then was chased at 37 degrees C. The hydrolysis of the accumulated ester proceeded linearly for several hours. Almost all of the released [3H]cholesterol moved to the plasma membrane rapidly and without a discernable lag. In contrast, the re-esterification in the ER of the released [3H]cholesterol showed a characteristic lag of 0.5-1 h. These data are inconsistent with direct cholesterol transfer from lysosomes to ER; rather, they suggest movement through the plasma membrane. Furthermore, we found that progesterone, imipramine and 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A) strongly inhibited the re-esterification of lysosomal cholesterol in the ER. However, contrary to previous reports, they did not block transfer of [3H]cholesterol from lysosomes to the cell surface. Therefore, the site of action of these agents was not at the lysosomes. We suggest instead that their known ability to block cholesterol movement from the plasma membrane to the ER accounts for the inhibition of lysosomal cholesterol esterification. These findings are consistent with the hypothesis that cholesterol released from lysosomes passes through the plasma membrane on its way to the ER rather than proceeding there directly. As a result, ingested cholesterol is subject to the same homeostatic regulation as the bulk of cell cholesterol, which is located in the plasma membrane.

          Related collections

          Author and article information

          Comments

          Comment on this article