Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small cell lung cancer in preclinical models

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Continuous de novo fatty acid synthesis is a common feature of cancer required to meet the biosynthetic demands of a growing tumor. This process is controlled by the rate-limiting enzyme acetyl-CoA carboxylase (ACC), an attractive but traditionally intractable drug target. Here, we provide genetic and pharmacological evidence that in preclinical models ACC is required to maintain de novo fatty acid synthesis needed for growth and viability of non-small cell lung cancer (NSCLC). We describe the ability of ND-646—an allosteric inhibitor of the ACC enzymes ACC1 and ACC2 that prevents ACC subunit dimerization—to suppress fatty acid synthesis in vitro and in vivo. Chronic ND-646 treatment of xenograft and genetically engineered mouse models of NSCLC inhibited tumor growth. When administered as a single agent or in combination with the standard-of-care drug carboplatin, ND-646 markedly suppressed lung tumor growth in the Kras;Trp53−/− (also known as KRAS p53) and Kras;Stk11−/− (also known as KRAS Lkb1) mouse models of NSCLC. These findings demonstrate that ACC mediates a metabolic liability of NSCLC and that ACC inhibition by ND-646 is detrimental to NSCLC growth, supporting further examination of the use of ACC inhibitors in oncology.

      Related collections

      Most cited references 42

      • Record: found
      • Abstract: found
      • Article: found

      Hallmarks of Cancer: The Next Generation

      The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Understanding the Warburg effect: the metabolic requirements of cell proliferation.

        In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Genome engineering using the CRISPR-Cas9 system.

          Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
            [2 ]Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
            [3 ]Clayton Foundation Laboratories of Peptide Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
            [4 ]Schrödinger, New York, NY, USA
            [5 ]Nimbus Therapeutics, Cambridge, MA, USA
            [6 ]Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
            Author notes
            [* ]To whom correspondence should be addressed: shaw@ 123456salk.edu , rosana.kapeller@ 123456nimbustx.com
            [$]

            these authors contributed equally to this work

            Journal
            9502015
            8791
            Nat Med
            Nat. Med.
            Nature medicine
            1078-8956
            1546-170X
            23 August 2016
            19 September 2016
            October 2016
            19 March 2017
            : 22
            : 10
            : 1108-1119
            27643638
            5053891
            10.1038/nm.4181
            NIHMS809909

            Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

            Categories
            Article

            Medicine

            Comments

            Comment on this article