Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Protein kinase Cε activity induces anti-inflammatory and anti-apoptotic genes via an ERK1/2- and NF-κB-dependent pathway to enhance vascular protection.

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Vascular endothelial injury predisposes to endothelial dysfunction and atherogenesis. We have investigated the hypothesis that PKCε (protein kinase Cε) is an important upstream regulator of cytoprotective pathways in vascular ECs (endothelial cells). Depletion of PKCε in human ECs reduced expression of the cytoprotective genes A1, A20 and Bcl-2. Conversely, constitutively active PKCε expressed in human ECs increased mRNA and protein levels of these cytoprotective genes, with up-regulation dependent upon ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. Furthermore, inhibition of NF-κB (nuclear factor κB) by the pharmacological antagonist BAY 11-7085 or an IκB (inhibitor of NF-κB) SuperRepressor prevented cytoprotective gene induction. Activation of PKCε enhanced p65 NF-κB DNA binding and elevated NF-κB transcriptional activity. Importantly, although NF-κB activation by PKCε induced cytoprotective genes, it did not up-regulate pro-inflammatory NF-κB targets [E-selectin, VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1)]. Indeed, PKCε exhibited cytoprotective and anti-inflammatory actions, including inhibition of TNFα (tumour necrosis factor α)-induced JNK (c-Jun N-terminal kinase) phosphorylation and ICAM-1 up-regulation, a response attenuated by depletion of A20. Thus we conclude that PKCε plays an essential role in endothelial homoeostasis, acting as an upstream co-ordinator of gene expression through activation of ERK1/2, inhibition of JNK and diversion of the NF-κB pathway to cytoprotective gene induction, and propose that PKCε represents a novel therapeutic target for endothelial dysfunction.

      Related collections

      Author and article information

      Affiliations
      [1 ] Vascular Sciences Unit, Imperial Centre for Translational & Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK.
      Journal
      Biochem. J.
      The Biochemical journal
      1470-8728
      0264-6021
      Oct 15 2012
      : 447
      : 2
      22849349
      BJ20120574
      10.1042/BJ20120574

      Comments

      Comment on this article