14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Beyond Biology: The Crucial Role of Sex and Gender in Oncology

      Submit here before May 31, 2024

      About Oncology Research and Treatment: 2.4 Impact Factor I 3.3 CiteScore I 0.495 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      TUBB3 Is Associated with High-Grade Histology, Poor Prognosis, p53 Expression, and Cancer Stem Cell Markers in Clear Cell Renal Cell Carcinoma

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: βIII-Tubulin, encoded by the TUBB3 gene, is a microtubule protein. Several studies have shown that overexpression of TUBB3 is linked to poor prognosis and is involved in taxane resistance in some cancers. Objective: The aim of this study was to analyze the expression and function of TUBB3 in clear cell renal cell carcinoma (ccRCC). Methods: The expression of TUBB3 was determined using immuno­histochemistry in ccRCC specimens. The effects of TUBB3 knockdown on cell growth and invasion were evaluated in RCC cell lines. We analyzed the interaction between TUBB3, p53, cancer stem cell markers, and PD-L1. Results: In 137 cases of ccRCC, immunohistochemistry showed that 28 (20%) of the ccRCC cases were positive for TUBB3. High TUBB3 expression was significantly correlated with high nuclear grade, high T stage, and N stage. A Kaplan-Meier analysis showed that high expression of TUBB3 was associated with poor overall survival after nephrectomy. In silico analysis also showed that high TUBB3 expression was correlated with overall survival. Knockdown of TUBB3 suppressed cell growth and invasion in 786-O and Caki-1 cells. High TUBB3 expression was associated with CD44, CD133, PD-L1, and p53 in ccRCC. We generated p53 knockout cells using the CRISPR-Cas9 system. Western blotting revealed that p53 knockout upregulated the expression of TUBB3. Conclusion: These results suggest that TUBB3 may play an oncogenic role and could be a potential therapeutic target in ccRCC.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic diversity of tumors with mismatch repair deficiency influences anti–PD-1 immunotherapy response

          Tumors with mismatch repair deficiency (MMR-d) are characterized by sequence alterations in microsatellites and can accumulate thousands of mutations. This high mutational burden renders tumors immunogenic and sensitive to programmed cell death–1 (PD-1) immune checkpoint inhibitors. Yet, despite their tumor immunogenicity, patients with MMR-deficient tumors experience highly variable responses, and roughly half are refractory to treatment. We present experimental and clinical evidence showing that the degree of microsatellite instability (MSI) and resultant mutational load, in part, underlies the variable response to PD-1 blockade immunotherapy in MMR-d human and mouse tumors. The extent of response is particularly associated with the accumulation of insertion-deletion (indel) mutational load. This study provides a rationale for the genome-wide characterization of MSI intensity and mutational load to better profile responses to anti–PD-1 immunotherapy across MMR-deficient human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Regulation of PD-L1: Emerging Routes for Targeting Tumor Immune Evasion

            Immune checkpoint blockade therapies (ICBTs) targeting programmed cell death 1 (PD-1) and its ligand programmed death ligand-1 (PD-L1/B7-H1/CD274) have exhibited momentous clinical benefits and durable responses in multiple tumor types. However, primary resistance is found in considerable number of cancer patients, and most responders eventually develop acquired resistance to ICBT. To tackle these challenges, it is essential to understand how PD-L1 is controlled by cancer cells to evade immune surveillance. Recent research has shed new light into the mechanisms of PD-L1 regulation at genetic, epigenetic, transcriptional, translational, and posttranslational levels. In this work, we systematically discuss the mechanisms that control the gene amplification, epigenetic alteration, transcription, subcellular transportation and posttranscriptional modification of PD-L1 in cancer cells. We further categorize posttranscriptional PD-L1 regulations by the molecular modification of PD-L1, including glycosylation, phosphorylation, ubiquitination, deubiquitination, and lysosomal degradation. These findings may provide new routes for targeting tumor immune escape and catalyze the development of small molecular inhibitors of PD-L1 in addition to existing antibody drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy

              Radiotherapy (RT) has been applied for decades as a treatment modality in the management of various types of cancer. Ionizing radiation induces tumor cell death, which in turn can either elicit protective anti-tumor immune responses or immunosuppression in the tumor micromilieu that contributes to local tumor recurrence. Immunosuppression is frequently accompanied by the attraction of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), M2 tumor-associated macrophages (TAMs), T regulatory cells (Tregs), N2 neutrophils, and by the release of immunosuppressive cytokines (TGF-β, IL-10) and chemokines. Immune checkpoint pathways, particularly of the PD-1/PD-L1 axis, have been determined as key regulators of cancer immune escape. While IFN-dependent upregulation of PD-L1 has been extensively investigated, up-to-date studies indicated the importance of DNA damage signaling in the regulation of PD-L1 expression following RT. DNA damage dependent PD-L1 expression is upregulated by ATM/ATR/Chk1 kinase activities and cGAS/STING-dependent pathway, proving the role of DNA damage signaling in PD-L1 induced expression. Checkpoint blockade immunotherapies (i.e., application of anti-PD-1 and anti-PD-L1 antibodies) combined with RT were shown to significantly improve the objective response rates in therapy of various primary and metastatic malignancies. Further improvements in the therapeutic potential of RT are based on combinations of RT with other immunotherapeutic approaches including vaccines, cytokines and cytokine inducers, and an adoptive immune cell transfer (DCs, NK cells, T cells). In the current review we provide immunological rationale for a combination of RT with various immunotherapies as well as analysis of the emerging preclinical evidences for these therapies.
                Bookmark

                Author and article information

                Journal
                OCL
                Oncology
                10.1159/issn.0030-2414
                Oncology
                S. Karger AG
                0030-2414
                1423-0232
                2020
                October 2020
                25 June 2020
                : 98
                : 10
                : 689-698
                Affiliations
                [_a] aDepartment of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
                [_b] bDepartment of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
                Author notes
                *Yohei Sekino, Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan), akikosekino@gmail.com
                Article
                506775 Oncology 2020;98:689–698
                10.1159/000506775
                32585672
                c5b7e43a-8474-489d-8e2e-cf8e0e7d1620
                © 2020 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 21 January 2020
                : 21 February 2020
                Page count
                Figures: 4, Tables: 5, Pages: 10
                Categories
                Clinical Study

                Oncology & Radiotherapy,Pathology,Surgery,Obstetrics & Gynecology,Pharmacology & Pharmaceutical medicine,Hematology
                Renal cell carcinoma,TUBB3,Cancer stem cell,Prognostic biomarker,p53

                Comments

                Comment on this article