Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

Interconnection of Salt-induced Hydrophobic Compaction and Secondary Structure Formation Depends on Solution Conditions : REVISITING EARLY EVENTS OF PROTEIN FOLDING AT SINGLE MOLECULE RESOLUTION

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: not found

      Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques.

      Pulse field gradient NMR methods have been used to determine the effective hydrodynamic radii of a range of native and nonnative protein conformations. From these experimental data, empirical relationships between the measured hydrodynamic radius (R(h)) and the number of residues in the polypeptide chain (N) have been established; for native folded proteins R(h) = 4.75N (0.29)A and for highly denatured states R(h) = 2.21N (0.57)A. Predictions from these equations agree well with experimental data from dynamic light scattering and small-angle X-ray or neutron scattering studies reported in the literature for proteins ranging in size from 58 to 760 amino acid residues. The predicted values of the hydrodynamic radii provide a framework that can be used to analyze the conformational properties of a range of nonnative states of proteins. Several examples are given here to illustrate this approach including data for partially structured molten globule states and for proteins that are unfolded but biologically active under physiological conditions. These reveal evidence for significant coupling between local and global features of the conformational ensembles adopted in such states. In particular, the effective dimensions of the polypeptide chain are found to depend significantly on the level of persistence of regions of secondary structure or features such as hydrophobic clusters within a conformational ensemble.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        The molecular basis for the chemical denaturation of proteins by urea.

        Molecular dynamics simulations of the protein chymotrypsin inhibitor 2 in 8 M urea at 60 degrees C were undertaken to investigate the molecular basis of chemical denaturation. The protein unfolded rapidly under these conditions, but it retained its native structure in a control simulation in water at the same temperature. The overall process of unfolding in urea was similar to that observed in thermal denaturation simulations above the protein's T(m) of 75 degrees C. The first step in unfolding was expansion of the hydrophobic core. Then, the core was solvated by water and later by urea. The denatured structures in both urea and at high temperature contained residual native helical structure, whereas the beta-structure was completely disrupted. The average residence time for urea around hydrophilic groups was six times greater than around hydrophobic residues and in all cases greater than the corresponding water residence times. Water self-diffusion was reduced 40% in 8 M urea. Urea altered water structure and dynamics, thereby diminishing the hydrophobic effect and encouraging solvation of hydrophobic groups. In addition, through urea's weakening of water structure, water became free to compete with intraprotein interactions. Urea also interacted directly with polar residues and the peptide backbone, thereby stabilizing nonnative conformations. These simulations suggest that urea denatures proteins via both direct and indirect mechanisms.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins.

          Many eukaryotic proteins are disordered under physiological conditions, and fold into ordered structures only on binding to their cellular targets. Such intrinsically disordered proteins (IDPs) often contain a large fraction of charged amino acids. Here, we use single-molecule Förster resonance energy transfer to investigate the influence of charged residues on the dimensions of unfolded and intrinsically disordered proteins. We find that, in contrast to the compact unfolded conformations that have been observed for many proteins at low denaturant concentration, IDPs can exhibit a prominent expansion at low ionic strength that correlates with their net charge. Charge-balanced polypeptides, however, can exhibit an additional collapse at low ionic strength, as predicted by polyampholyte theory from the attraction between opposite charges in the chain. The pronounced effect of charges on the dimensions of unfolded proteins has important implications for the cellular functions of IDPs.
            Bookmark

            Author and article information

            Journal
            Journal of Biological Chemistry
            J. Biol. Chem.
            American Society for Biochemistry & Molecular Biology (ASBMB)
            0021-9258
            1083-351X
            March 23 2012
            March 30 2012
            : 287
            : 14
            : 11546-11555
            10.1074/jbc.M111.315648
            © 2012

            Comments

            Comment on this article