114
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein ( ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.

          Author Summary

          Vector-transmitted blood parasites cause some of the most widely distributed, serious, and poorly controlled diseases globally, including the most severe form of human malaria caused by Plasmodium falciparum. In livestock, tick-transmitted blood parasites include the protozoa Theileria parva, the cause of East Coast fever and Babesia bovis, the cause of tick fever, to which well over half of the world's cattle population are at risk. There is a critical need to better understand the mechanisms by which these parasites are transmitted, persist, and cause disease in order to optimize methods for control, including development of vaccines. This manuscript presents the genome sequence of B. bovis, and provides a whole genome comparative analysis with P. falciparum and T. parva. Genome-wide characterization of the B. bovis antigenically variable ves1 family reveals interesting differences in organization and expression from the related P. falciparum var genes. The second largest gene family ( smorf) in B. bovis was newly discovered and may itself be involved in persistence, highlighting the utility of this approach in gene discovery. Organization and structure of the B. bovis genome is most similar to that of Theileria, and despite common features in clinical outcome is limited to microregional similarity with P. falciparum. Comparative gene analysis identifies several previously unknown proteins as homologs of vaccine candidates in one or more of these parasites, and candidate genes whose expression might account for unique properties such as the ability of Theileria to reversibly transform leukocytes.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii.

          Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum.

            Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the framework for examining var gene expression, its regulation and switching. It was found that var gene switching occurs in situ. Ubiquitous transcription of all var gene variants appears to occur in early ring stages. However, var gene expression is tightly regulated in trophozoites and is exerted through a silencing mechanism. Transcriptional control is mutually exclusive in parasites that express defined adhesive phenotypes. In situ var gene switching is apparently mediated at the level of transcriptional initiation, as demonstrated by nuclear run-on analyses. Our results suggest that an epigenetic mechanism(s) is involved in var gene regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum.

              The malaria parasite Plasmodium falciparum undergoes antigenic variation to evade host immune responses through switching expression of variant surface proteins encoded by the var gene family. We demonstrate that both a subtelomeric transgene and var genes are subject to reversible gene silencing. Var gene silencing involves the SIR complex as gene disruption of PfSIR2 results in activation of this gene family. We also demonstrate that perinuclear gene activation involves chromatin alterations and repositioning into a location that may be permissive for transcription. Together, this implies that locus repositioning and heterochromatic silencing play important roles in the epigenetic regulation of virulence genes in P. falciparum.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2007
                19 October 2007
                : 3
                : 10
                : e148
                Affiliations
                [1 ] Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
                [2 ] Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, United States of America
                [3 ] The Institute for Genomic Research, Rockville, Maryland, United States of America
                [4 ] Division of Cell and Molecular Biology, Faculty of Life Sciences, Imperial College, London, United Kingdom
                New York University School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: kbrayton@ 123456vetmed.wsu.edu (KAB); tfm@ 123456vetmed.wsu.edu (TFM); vnene@ 123456som.umaryland.edu (VMN)
                Article
                07-PLPA-RA-0191R2 plpa-03-10-08
                10.1371/journal.ppat.0030148
                2034396
                17953480
                c5c336f4-7cae-4cff-a3bf-d0cbf9cd7e33
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 26 March 2007
                : 30 August 2007
                Page count
                Pages: 13
                Categories
                Research Article
                Genetics and Genomics
                Infectious Diseases
                Microbiology
                Eukaryotes
                Custom metadata
                Brayton KA, Lau AOT, Herndon DR, Hannick L, Kappmeyer LS, et al. (2007) Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 3(10): e148. doi: 10.1371/journal.ppat.0030148

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article