38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting Functional Alternative Splicing by Measuring RNA Selection Pressure from Multigenome Alignments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-throughput methods such as EST sequencing, microarrays and deep sequencing have identified large numbers of alternative splicing (AS) events, but studies have shown that only a subset of these may be functional. Here we report a sensitive bioinformatics approach that identifies exons with evidence of a strong RNA selection pressure ratio (RSPR) —i.e., evolutionary selection against mutations that change only the mRNA sequence while leaving the protein sequence unchanged—measured across an entire evolutionary family, which greatly amplifies its predictive power. Using the UCSC 28 vertebrate genome alignment, this approach correctly predicted half to three-quarters of AS exons that are known binding targets of the NOVA splicing regulatory factor, and predicted 345 strongly selected alternative splicing events in human, and 262 in mouse. These predictions were strongly validated by several experimental criteria of functional AS such as independent detection of the same AS event in other species, reading frame-preservation, and experimental evidence of tissue-specific regulation: 75% (15/20) of a sample of high-RSPR exons displayed tissue specific regulation in a panel of ten tissues, vs. only 20% (4/20) among a sample of low-RSPR exons. These data suggest that RSPR can identify exons with functionally important splicing regulation, and provides biologists with a dataset of over 600 such exons. We present several case studies, including both well-studied examples ( GRIN1) and novel examples ( EXOC7). These data also show that RSPR strongly outperforms other approaches such as standard sequence conservation (which fails to distinguish amino acid selection pressure from RNA selection pressure), or pairwise genome comparison (which lacks adequate statistical power for predicting individual exons).

          Author Summary

          Alternative splicing is an important mechanism for regulating gene function in complex organisms, and has been shown to play a key role in human diseases such as cancer. Recently, high-throughput technologies have been used in an effort to detect alternative splicing events throughout the human genome. However, validating the results of these automated detection methods, and showing that the minor splice forms they detected play an important role in regulating biological functions, have traditionally required time-consuming experiments. In this study we show that such regulatory functions can very often be detected by a distinctive pattern of strong selection on RNA sequence motifs within the alternatively spliced region. We have measured this “RNA selection pressure ratio” (RSPR) across 28 animal species representing 400 million years of evolution, and show that this metric successfully predicts known patterns of alternative splicing, and also have validated its predictions experimentally. For example, whereas high-RSPR alternative splices were found experimentally to undergo tissue-specific regulation in 75% of cases, only 20% of low-RSPR cases were found to be tissue-specific. Using RSPR, we have predicted over 600 human and mouse alternative splicing events that appear to be under strong selection. These data should be valuable for biologists seeking to understand the functional effects and underlying mechanisms of splicing regulation.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models.

            Approximate methods for estimating the numbers of synonymous and nonsynonymous substitutions between two DNA sequences involve three steps: counting of synonymous and nonsynonymous sites in the two sequences, counting of synonymous and nonsynonymous differences between the two sequences, and correcting for multiple substitutions at the same site. We examine complexities involved in those steps and propose a new approximate method that takes into account two major features of DNA sequence evolution: transition/transversion rate bias and base/codon frequency bias. We compare the new method with maximum likelihood, as well as several other approximate methods, by examining infinitely long sequences, performing computer simulations, and analyzing a real data set. The results suggest that when there are transition/transversion rate biases and base/codon frequency biases, previously described approximate methods for estimating the nonsynonymous/synonymous rate ratio may involve serious biases, and the bias can be both positive and negative. The new method is, in general, superior to earlier approximate methods and may be useful for analyzing large data sets, although maximum likelihood appears to always be the method of choice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative splicing: new insights from global analyses.

              Recent analyses of sequence and microarray data have suggested that alternative splicing plays a major role in the generation of proteomic and functional diversity in metazoan organisms. Efforts are now being directed at establishing the full repertoire of functionally relevant transcript variants generated by alternative splicing, the specific roles of such variants in normal and disease physiology, and how alternative splicing is coordinated on a global level to achieve cell- and tissue-specific functions. Recent progress in these areas is summarized in this review.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2009
                December 2009
                18 December 2009
                : 5
                : 12
                : e1000608
                Affiliations
                [1 ]Molecular Biology Institute, Center for Computational Biology, Institute for Genomics and Proteomics, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
                [2 ]Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
                [3 ]Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
                University of Chicago, United States of America
                Author notes

                Conceived and designed the experiments: HL YX CJL. Performed the experiments: HL LL SS. Analyzed the data: HL YX. Wrote the paper: HL CJL.

                Article
                09-PLCB-RA-0713R3
                10.1371/journal.pcbi.1000608
                2784930
                20019791
                c5c5f357-b4be-4801-a2cd-c1800ec76838
                Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 June 2009
                : 12 November 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Computational Biology/Alternative Splicing
                Computational Biology/Genomics
                Genetics and Genomics/Comparative Genomics
                Molecular Biology/RNA Splicing

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article