9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Autotrophic microbial arsenotrophy in arsenic-rich soda lakes

      , , ,
      FEMS Microbiology Letters
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial arsenic: from geocycles to genes and enzymes.

          Arsenic compounds have been abundant at near toxic levels in the environment since the origin of life. In response, microbes have evolved mechanisms for arsenic resistance and enzymes that oxidize As(III) to As(V) or reduce As(V) to As(III). Formation and degradation of organoarsenicals, for example methylarsenic compounds, occur. There is a global arsenic geocycle, where microbial metabolism and mobilization (or immobilization) are important processes. Recent progress in studies of the ars operon (conferring resistance to As(III) and As(V)) in many bacterial types (and related systems in Archaea and yeast) and new understanding of arsenite oxidation and arsenate reduction by respiratory-chain-linked enzyme complexes has been substantial. The DNA sequencing and protein crystal structures have established the convergent evolution of three classes of arsenate reductases (that is classes of arsenate reductases are not of common evolutionary origin). Proposed reaction mechanisms in each case involve three cysteine thiols and S-As bond intermediates, so convergent evolution to similar mechanisms has taken place.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic identification of a respiratory arsenate reductase.

            For more than a decade, it has been recognized that arsenate [H2AsO41-; As(V)] can be used by microorganisms as a terminal electron acceptor in anaerobic respiration. Given the toxicity of arsenic, the mechanistic basis of this process is intriguing, as is its evolutionary origin. Here we show that a two-gene cluster (arrAB; arsenate respiratory reduction) in the bacterium Shewanella sp. strain ANA-3 specifically confers respiratory As(V) reductase activity. Mutants with in-frame deletions of either arrA or arrB are incapable of growing on As(V), yet both are able to grow on a wide variety of other electron acceptors as efficiently as the wild-type. Complementation by the wild-type sequence rescues the mutants' ability to respire As(V). arrA is predicted to encode a 95.2-kDa protein with sequence motifs similar to the molybdenum containing enzymes of the dimethyl sulfoxide reductase family. arrB is predicted to encode a 25.7-kDa iron-sulfur protein. arrA and arrB comprise an operon that contains a twin arginine translocation (Tat) motif in ArrA (but not in ArrB) as well as a putative anaerobic transcription factor binding site upstream of arrA, suggesting that the respiratory As(V) reductase is exported to the periplasm via the Tat pathway and under anaerobic transcriptional control. These genes appear to define a new class of reductases that are specific for respiratory As(V) reduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arsenic, microbes and contaminated aquifers.

              The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiology Letters
                Oxford University Press (OUP)
                1574-6968
                July 08 2017
                July 08 2017
                : 364
                : 15
                Article
                10.1093/femsle/fnx146
                c5cdec17-4e1d-4204-be2b-2a5d5bbc77ac
                © 2017
                History

                Comments

                Comment on this article