0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The effect of anandamide on prolactin secretion is modulated by estrogen

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent research has revealed that endogenous cannabinoid receptors (CB1 and CB2) react with the active ingredient of marijuana, Delta(9)-tetrahydrocannabinol. Two endogenous ligands activate these receptors. The principal one, anandamide (AEA), activates CB1. AEA and CB1 are localized to various neurons within the brain. Because Delta(9)-tetrahydrocannabinol inhibited prolactin (Prl) secretion following its intraventricular injection into male rats, we hypothesized that AEA would have a similar effect. Estrogen modifies many hormonal responses and is known to increase Prl secretion. Therefore, we hypothesized that responses to intraventricular AEA would change depending on the gonadal steroid environment. Consequently, we evaluated the effects of lateral cerebral ventricular microinjection of AEA (20 ng) into male, ovariectomized (OVX), and estrogen-primed (OVX-E) rats. AEA decreased plasma Prl in male rats, had little effect in OVX females, and increased Prl in OVX-E rats. The results were at least partially mediated by changes in dopaminergic turnover, altering the inhibitory dopaminergic control of Prl release by the anterior pituitary gland. Thus, dopamine turnover was increased in the male rats and decreased significantly in OVX and in OVX-E rats. The changes in Prl may be caused not only by altered dopamine input to the anterior pituitary gland but also by effects of AEA on other transmitters known to alter Prl release. Importantly, in OVX-E rats, the elevated Prl release and the response to AEA were blocked by the AEA antagonist, indicating that AEA is a synaptic transmitter released from neurons that decrease inhibitory control of Prl release.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular characterization of a peripheral receptor for cannabinoids.

          The major active ingredient of marijuana, delta 9-tetrahydrocannabinol (delta 9-THC), has been used as a psychoactive agent for thousands of years. Marijuana, and delta 9-THC, also exert a wide range of other effects including analgesia, anti-inflammation, immunosuppression, anticonvulsion, alleviation of intraocular pressure in glaucoma, and attenuation of vomiting. The clinical application of cannabinoids has, however, been limited by their psychoactive effects, and this has led to interest in the biochemical bases of their action. Progress stemmed initially from the synthesis of potent derivatives of delta 9-THC, and more recently from the cloning of a gene encoding a G-protein-coupled receptor for cannabinoids. This receptor is expressed in the brain but not in the periphery, except for a low level in testes. It has been proposed that the nonpsychoactive effects of cannabinoids are either mediated centrally or through direct interaction with other, non-receptor proteins. Here we report the cloning of a receptor for cannabinoids that is not expressed in the brain but rather in macrophages in the marginal zone of spleen.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cannabinoid receptor localization in brain.

              [3H]CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 18 2003
                February 10 2003
                February 18 2003
                : 100
                : 4
                : 2134-2139
                Article
                10.1073/pnas.0437924100
                149971
                12578974
                © 2003
                Product

                Comments

                Comment on this article