Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus.

      The Journal of Biological Chemistry

      Casein Kinase II, Animals, genetics, metabolism, DNA-Binding Proteins, chemistry, Drosophila Proteins, Drosophila melanogaster, enzymology, Gene Expression Regulation, Hedgehog Proteins, Protein Stability, Receptors, G-Protein-Coupled, Signal Transduction, Transcription Factors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Casein kinase 2 (CK2) is a typical serine/threonine kinase consisting of α and β subunits and has been implicated in many cellular and developmental processes. In this study, we demonstrate that CK2 is a positive regulator of the Hedgehog (Hh) signal transduction pathway. We found that inactivation of CK2 by CK2β RNAi enhances the loss-of-Hh wing phenotype induced by a dominant negative form of Smoothened (Smo). CK2β RNAi attenuates Hh-induced Smo accumulation and down-regulates Hh target gene expression, whereas increasing CK2 activity by coexpressing CK2α and CK2β increases Smo accumulation and induces ectopic Hh target gene expression. We identified the serine residues in Smo that can be phosphorylated by CK2 in vitro. Mutating these serine residues attenuates the ability of Smo to transduce high level Hh signaling activity in vivo. Furthermore, we found that CK2 plays an additional positive role downstream of Smo by regulating the stability of full-length Cubitus interruptus (Ci). CK2β RNAi promotes Ci degradation whereas coexpressing CK2α and CK2β increases the half-life of Ci. We showed that CK2 prevents Ci ubiquitination and degradation by the proteasome. Thus, CK2 promotes Hh signaling activity by regulating multiple pathway components.

          Related collections

          Author and article information

          Journal
          10.1074/jbc.M110.174565
          2988328
          20876583

          Comments

          Comment on this article