27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Succinate dehydrogenase (SDH)-deficient neoplasia

      Histopathology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found

          Targeting metabolic transformation for cancer therapy.

          Cancer therapy has long relied on the rapid proliferation of tumour cells for effective treatment. However, the lack of specificity in this approach often leads to undesirable side effects. Many reports have described various 'metabolic transformation' events that enable cancer cells to survive, suggesting that metabolic pathways might be good targets. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered metabolic pathways of tumours. This Review highlights pathways against which there are already drugs in different stages of development and also discusses additional druggable targets.
            • Record: found
            • Abstract: found
            • Article: not found

            Germ-line mutations in nonsyndromic pheochromocytoma.

            The group of susceptibility genes for pheochromocytoma that included the proto-oncogene RET (associated with multiple endocrine neoplasia type 2 [MEN-2]) and the tumor-suppressor gene VHL (associated with von Hippel-Lindau disease) now also encompasses the newly identified genes for succinate dehydrogenase subunit D (SDHD) and succinate dehydrogenase subunit B (SDHB), which predispose carriers to pheochromocytomas and glomus tumors. We used molecular tools to classify a large cohort of patients with pheochromocytoma with respect to the presence or absence of mutations of one of these four genes and to investigate the relevance of genetic analyses to clinical practice. Peripheral blood from unrelated, consenting registry patients with pheochromocytoma was tested for mutations of RET, VHL, SDHD, and SDHB. Clinical data at first presentation and follow-up were evaluated. Among 271 patients who presented with nonsyndromic pheochromocytoma and without a family history of the disease, 66 (24 percent) were found to have mutations (mean age, 25 years; 32 men and 34 women). Of these 66, 30 had mutations of VHL, 13 of RET, 11 of SDHD, and 12 of SDHB. Younger age, multifocal tumors, and extraadrenal tumors were significantly associated with the presence of a mutation. However, among the 66 patients who were positive for mutations, only 21 had multifocal pheochromocytoma. Twenty-three (35 percent) presented after the age of 30 years, and 17 (8 percent) after the age of 40. Sixty-one (92 percent) of the patients with mutations were identified solely by molecular testing of VHL, RET, SDHD, and SDHB; these patients had no associated signs and symptoms at presentation. Almost one fourth of patients with apparently sporadic pheochromocytoma may be carriers of mutations; routine analysis for mutations of RET, VHL, SDHD, and SDHB is indicated to identify pheochromocytoma-associated syndromes that would otherwise be missed.
              • Record: found
              • Abstract: found
              • Article: not found

              Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations.

              Carney-Stratakis syndrome, an inherited condition predisposing affected individuals to gastrointestinal stromal tumor (GIST) and paraganglioma, is caused by germline mutations in succinate dehydrogenase (SDH) subunits B, C, or D, leading to dysfunction of complex II of the electron transport chain. We evaluated the role of defective cellular respiration in sporadic GIST lacking mutations in KIT or PDGFRA (WT). Thirty-four patients with WT GIST without a personal or family history of paraganglioma were tested for SDH germline mutations. WT GISTs lacking demonstrable SDH genetic inactivation were evaluated for SDHB expression by immunohistochemistry and Western blotting and for complex II activity. For comparison, SDHB expression was also determined in KIT mutant and neurofibromatosis-1-associated GIST, and complex II activity was also measured in SDH-deficient paraganglioma and KIT mutant GIST; 4 of 34 patients (12%) with WT GIST without a personal or family history of paraganglioma had germline mutations in SDHB or SDHC. WT GISTs lacking somatic mutations or deletions in SDH subunits had either complete loss of or substantial reduction in SDHB protein expression, whereas most KIT mutant GISTs had strong SDHB expression. Complex II activity was substantially decreased in WT GISTs. WT GISTs, particularly those in younger patients, have defects in SDH mitochondrial complex II, and in a subset of these patients, GIST seems to arise from germline-inactivating SDH mutations. Testing for germline mutations in SDH is recommended in patients with WT GIST. These findings highlight a potential central role of SDH dysregulation in WT GIST oncogenesis.

                Author and article information

                Journal
                Histopathology
                Histopathology
                Wiley-Blackwell
                03090167
                January 2018
                January 14 2018
                : 72
                : 1
                : 106-116
                Article
                10.1111/his.13277
                29239034
                c5e6e9b8-2c07-4722-a6f3-70f6a33a95f8
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                Related Documents Log