3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pre‐season physiological characteristics of English first and second division soccer players

      , ,
      Journal of Sports Sciences
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This investigation was undertaken in an effort to establish physiological characteristics of soccer players and to relate them to positional roles. A total of 135 footballers (age 24.4 +/- 4.6 years) were assessed for body mass, % body fat, haemoglobin, maximal oxygen uptake (VO2 max), leg power, anaerobic capacity and speed prior to an English league season. The sample included 13 goalkeepers, 22 full-backs, 24 centre-backs, 35 midfield players and 41 forwards. The goalkeepers were significantly heavier (86.1 +/- 5.5 kg; P < 0.01) than all groups except the centre-backs, had significantly higher estimated body fat percentages than centre-backs, forwards, midfield players (P < 0.01) or full-backs (P < 0.05), significantly lower estimated VO2 max values (56.4 +/- 3.9 ml kg-1 min-1; P < 0.01) and were slowest over 60 m (12.71 +/- 0.42 s). The midfield players had the highest predicted VO2 max values (61.4 +/- 3.4 ml kg-1 min-1), this being significantly greater (P < 0.05) than for the centre-backs. The forwards were the fastest group over 60 m (12.19 +/- 0.30 s), being significantly quicker than goalkeepers or centre-backs (P < 0.01) and full-backs (P < 0.05). Anaerobic power, as well as knee extensor torques (corrected for body mass) and extensor-flexor ratios, were similar between groups. No difference in estimated body fat percentage was observed between any of the outfield players, and haemoglobin concentrations were similar among players of all positions.(ABSTRACT TRUNCATED AT 250 WORDS)

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          A progressive shuttle run test to estimate maximal oxygen uptake.

          The purpose of the present study was to examine the validity of using a 20 m progressive shuttle run test to estimate maximal oxygen uptake. Running ability was described as the final level attained on the shuttle run test and as time on a 5 km run. Maximal oxygen uptake (VO2 max) was determined directly for seventy-four volunteers (36 men, 38 women) who also completed the shuttle run test. Maximal oxygen uptake values were 58.5 +/- 7.0 and 47.4 +/- 6.1 ml.kg-1.min-1 for the men and women respectively (mean +/- SD, P less than 0.01). The levels attained on the shuttle run test were 12.6 +/- 1.5 (men) and 9.6 +/- 1.8 (women; P less than 0.01). The correlation between VO2 max and shuttle level was 0.92. The correlation between VO2 max and the 5 km run was -0.94 and the correlation between both field tests was -0.96. The results of this study suggest that a progressive shuttle run test provides a valid estimate of VO2 max and indicates 5 km running potential in active men and women.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A maximal multistage 20-m shuttle run test to predict \(\dot V\) O2 max

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Applied Physiology of Soccer

                Bookmark

                Author and article information

                Journal
                Journal of Sports Sciences
                Journal of Sports Sciences
                Informa UK Limited
                0264-0414
                1466-447X
                November 14 2007
                November 14 2007
                : 10
                : 6
                : 541-547
                Article
                10.1080/02640419208729950
                1484400
                c5e80d32-9d5f-4254-97b2-d989685d6627
                © 2007
                History

                Comments

                Comment on this article