36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-Lapachone activates multiple cell death mechanisms including apoptosis, autophagy and necrotic cell death in cancer cells. In this study, we investigated β-lapachone-induced cell death and the underlying mechanisms in human hepatocellular carcinoma SK-Hep1 cells. β-Lapachone markedly induced cell death without caspase activation. β-Lapachone increased PI uptake and HMGB-1 release to extracellular space, which are markers of necrotic cell death. Necrostatin-1 (a RIP1 kinase inhibitor) markedly inhibited β-lapachone-induced cell death and HMGB-1 release. In addition, β-lapachone activated poly (ADP-ribosyl) polymerase-1(PARP-1) and promoted AIF release, and DPQ (a PARP-1 specific inhibitor) or AIF siRNA blocked β-lapachone-induced cell death. Furthermore, necrostatin-1 blocked PARP-1 activation and cytosolic AIF translocation. We also found that β-lapachone-induced reactive oxygen species (ROS) production has an important role in the activation of the RIP1-PARP1-AIF pathway. Finally, β-lapachone-induced cell death was inhibited by dicoumarol (a NQO-1 inhibitor), and NQO1 expression was correlated with sensitivity to β-lapachone. Taken together, our results demonstrate that β-lapachone induces programmed necrosis through the NQO1-dependent ROS-mediated RIP1-PARP1-AIF pathway.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis and necrosis: detection, discrimination and phagocytosis.

          Three major morphologies of cell death have been described: apoptosis (type I), cell death associated with autophagy (type II) and necrosis (type III). Apoptosis and cell death associated with autophagy can be distinguished by certain biochemical events. However, necrosis is characterized mostly in negative terms by the absence of caspase activation, cytochrome c release and DNA oligonucleosomal fragmentation. A particular difficulty in defining necrosis is that in the absence of phagocytosis apoptotic cells become secondary necrotic cells with many morphological features of primary necrosis. In this review, we present a selection of techniques that can be used to identify necrosis and to discriminate it from apoptosis. These techniques rely on the following cell death parameters: (1) morphology (time-lapse and transmission electron microscopy and flow fluorocytometry); (2) cell surface markers (phosphatidylserine exposure versus membrane permeability by flow fluorocytometry); (3) intracellular markers (oligonucleosomal DNA fragmentation by flow fluorocytometry, caspase activation, Bid cleavage and cytochrome c release by western blotting); (4) release of extracellular markers in the supernatant (caspases, HMGB-1 and cytokeratin 18). Finally, we report on methods that can be used to examine interactions between dying cells and phagocytes. We illustrate a quantitative method for detecting phagocytosis of dying cells by flow fluorocytometry. We also describe a recently developed approach based on the use of fluid phase tracers and different kind of microscopy, transmission electron and fluorescence microscopy, to characterize the mechanisms used by phagocytes to internalize dying cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation.

            Although TRAIL (tumor necrosis factor (TNF)-related apoptosis inducing ligand) is a well-known apoptosis inducer, we have previously demonstrated that acidic extracellular pH (pHe) switches TRAIL-induced apoptosis to regulated necrosis (or necroptosis) in human HT29 colon and HepG2 liver cancer cells. Here, we investigated the role of RIPK1 (receptor interacting protein kinase 1), RIPK3 and PARP-1 (poly (ADP-ribose) polymerase-1) in TRAIL-induced necroptosis in vitro and in concanavalin A (Con A)-induced murine hepatitis. Pretreatment of HT29 or HepG2 with pharmacological inhibitors of RIPK1 or PARP-1 (Nec-1 or PJ-34, respectively), or transient transfection with siRNAs against RIPK1 or RIPK3, inhibited both TRAIL-induced necroptosis and PARP-1-dependent intracellular ATP depletion demonstrating that RIPK1 and RIPK3 were involved upstream of PARP-1 activation and ATP depletion. In the mouse model of Con A-induced hepatitis, where death of mouse hepatocytes is dependent on TRAIL and NKT (Natural Killer T) cells, PARP-1 activity was positively correlated with liver injury and hepatitis was prevented both by Nec-1 or PJ-34. These data provide new insights into TRAIL-induced necroptosis with PARP-1 being active effector downstream of RIPK1/RIPK3 initiators and suggest that pharmacological inhibitors of RIPKs and PARP-1 could be new treatment options for immune-mediated hepatitis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis).

              The term cell necrobiology is introduced to comprise the life processes associated with morphological, biochemical, and molecular changes which predispose, precede, and accompany cell death, as well as the consequences and tissue response to cell death. Two alternative modes of cell death can be distinguished, apoptosis and accidental cell death, generally defined as necrosis. The wide interest in necrobiology in many disciplines stems from the realization that apoptosis, whether it occurs physiologically or as a manifestation of a pathological state, is an active mode of cell death and a subject of complex regulatory processes. A possibility exists, therefore, to interact with the regulatory machinery and thereby modulate the cell's propensity to die in response to intrinsic or exogenous signals. Flow cytometry appears to be the methodology of choice to study various aspects of necrobiology. It offers all the advantages of rapid, multiparameter analysis of large populations of individual cells to investigate the biological processes associated with cell death. Numerous methods have been developed to identify apoptotic and necrotic cells and are widely used in various disciplines, in particular in oncology and immunology. The methods based on changes in cell morphology, plasma membrane structure and transport function, function of cell organelles, DNA stability to denaturation, and endonucleolytic DNA degradation are reviewed and their applicability in the research laboratory and in the clinical setting is discussed. Improper use of flow cytometry in analysis of cell death and in data interpretation also is discussed. The most severe errors are due to i) misclassification of nuclear fragments and individual apoptotic bodies as single apoptotic cells, ii) assumption that the apoptotic index represents the rate of cell death, and iii) failure to confirm by microscopy that the cells classified by flow cytometry as apoptotic or necrotic do indeed show morphology consistent with this classification. It is expected that flow cytometry will be the dominant methodology for necrobiology.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                May 2014
                15 May 2014
                1 May 2014
                : 5
                : 5
                : e1230
                Affiliations
                [1 ]Department of Immunology, School of Medicine, Keimyung University , Daegu, Korea
                [2 ]Department of Anatomy, College of Medicine, Yeungnam University , Daegu, Korea
                [3 ]Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine , Busan, Korea
                [4 ]Department of Biochemistry, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu , Suwon, Korea
                Author notes
                [* ]Department of Immunology, School of Medicine, Keimyung University , 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea. Tel: +82 53 580 3882; Fax: +82 53 580 3795; E-mail: kwontk@ 123456dsmc.or.kr
                [5]

                These authors contributed equally to this work.

                Article
                cddis2014202
                10.1038/cddis.2014.202
                4047891
                24832602
                c5fa6fdd-fc11-4e8b-a79f-c4e511b0461b
                Copyright © 2014 Macmillan Publishers Limited

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 02 January 2014
                : 01 April 2014
                : 08 April 2014
                Categories
                Original Article

                Cell biology
                β-lapachone,nqo1,ros,rip1,parp1,aif
                Cell biology
                β-lapachone, nqo1, ros, rip1, parp1, aif

                Comments

                Comment on this article