30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thiazolidinedione-Induced Fluid Retention: Recent Insights into the Molecular Mechanisms

      review-article
      * , ,
      PPAR Research
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxisome proliferator-activated receptor- γ (PPAR γ ) agonists such as rosiglitazone and pioglitazone are used to improve insulin sensitivity in patients with diabetes mellitus. However, thiazolidinediones induce fluid retention, edema, and sometimes precipitate or exacerbate heart failure in a subset of patients. The mechanism through which thiazolidinediones induce fluid retention is controversial. Most studies suggest that this effect results from the increase in tubular sodium and water reabsorption in the kidney, but the role of specific nephron segments and sodium carriers involved is less clear. Some studies suggested that PPAR γ agonist stimulates Na + reabsorption in the collecting duct by activating epithelial Na + channel (ENaC), either directly or through serum and glucocorticoid-regulated kinase-1 (SGK-1). However, other studies did not confirm this mechanism and even report the suppression of ENaC. Alternative mechanisms in the collecting duct include stimulation of non-ENaC sodium channel or inhibition of chloride secretion to the tubular lumen. In addition, thiazolidinediones may augment sodium reabsorption in the proximal tubule by stimulating the expression and activity of apical Na +/H + exchanger-3 and basolateral Na +-HCO 3 cotransporter as well as of Na +,K +-ATPase. These effects are mediated by PPAR γ -induced nongenomic transactivation of the epidermal growth factor receptor and downstream extracellular signal-regulated kinases (ERK).

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption.

          Thiazolidinediones (TZDs) are widely used to treat type 2 diabetes mellitus; however, their use is complicated by systemic fluid retention. Along the nephron, the pharmacological target of TZDs, peroxisome proliferator-activated receptor-gamma (PPARgamma, encoded by Pparg), is most abundant in the collecting duct. Here we show that mice treated with TZDs experience early weight gain from increased total body water. Weight gain was blocked by the collecting duct-specific diuretic amiloride and was also prevented by deletion of Pparg from the collecting duct, using Pparg (flox/flox) mice. Deletion of collecting duct Pparg decreased renal Na(+) avidity and increased plasma aldosterone. Treating cultured collecting ducts with TZDs increased amiloride-sensitive Na(+) absorption and Scnn1g mRNA (encoding the epithelial Na(+) channel ENaCgamma) expression through a PPARgamma-dependent pathway. These studies identify Scnn1g as a PPARgamma target gene in the collecting duct. Activation of this pathway mediates fluid retention associated with TZDs, and suggests amiloride might provide a specific therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thiazolidinediones and PPARγ agonists: time for a reassessment.

            Thiazolidinediones (TZDs) are anti-diabetic drugs that act as insulin sensitizers and are used in the management of type 2 diabetes mellitus. TZDs, which are ligands for the transcription factor peroxisome proliferator-activated receptor PPARγ, have a wide spectrum of action, including modulation of glucose and lipid homeostasis, inflammation, atherosclerosis, bone remodeling and cell proliferation. Randomized clinical trials have demonstrated the efficacy and durability of the anti-hyperglycemic action of TZDs, and have suggested that the TZD pioglitazone also exerts cardioprotective action. However, the clinical use of TZDs is limited by the occurrence of several adverse events, including body-weight gain, congestive heart failure, bone fractures and possibly bladder cancer. Therefore, there is an unmet need for the development of new safer PPARγ-modulating drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thiazolidinedione safety.

              Thiazolidinediones (TZDs) initially showed great promise as unique receptor-mediated oral therapy for type 2 diabetes, but a host of serious side effects, primarily cardiovascular, have limited their utility. It is crucial at this point to perform a risk-benefit analysis to determine what role TZDs should play in our current treatment of type 2 diabetes and where the future of this class of drugs is headed. This review provides a comprehensive overview of the literature from 2000 onward reporting the known side effects of rosiglitazone and pioglitazone, with commentary on the quality of the data available, putative mechanism of each side effect and clinical significance. Finally, a perspective on the future of the TZDs as a class is provided. The current TZDs are first-generation, non-specific activators of peroxisome proliferator-activated receptor (PPAR) gamma, resulting in a wide array of deleterious side effects that currently limit their use. However, the development of highly targeted selective PPAR gamma modulators (SPPARγMs) and dual PPAR gamma/alpha agonists is on the horizon.
                Bookmark

                Author and article information

                Journal
                PPAR Res
                PPAR Res
                PPAR
                PPAR Research
                Hindawi Publishing Corporation
                1687-4757
                1687-4765
                2013
                18 March 2013
                : 2013
                : 628628
                Affiliations
                Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego, 20090 Lublin, Poland
                Author notes

                Academic Editor: Tianxin Yang

                Article
                10.1155/2013/628628
                3614122
                23577024
                c606c83f-f427-41e1-bf97-6a212b6136b3
                Copyright © 2013 Jerzy Bełtowski et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 December 2012
                : 19 February 2013
                Categories
                Review Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article