16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      L-carnitine reduces doxorubicin-induced apoptosis through a prostacyclin-mediated pathway in neonatal rat cardiomyocytes

      , , , , ,
      International Journal of Cardiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical use of doxorubicin is greatly limited by its severe cardiotoxic side effects. L-carnitine is a vitamin-like substance which has been successfully used in many cardiomyopathies, however, the intracellular mechanism(s) remain unclear. The objective of this study was set to evaluate the protective effect of L-carnitine on doxorubicin-induced cardiomyocyte apoptosis, and to explore its intracellular mechanism(s). Primary cultured neonatal rat cardiomyocytes were treated with doxorubicin (1 µM) with or without pretreatment with L-carnitine (1-30 mM). Lactate dehydrogenase assay, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling staining, and flow cytometry measurement were used to assess cytotoxicity and apoptosis. Fluorescent probes 2',7'-dichlorofluorescein diacetate and chemiluminescence assay of superoxide production were used to detect the production of reactive oxygen species. Western blotting was used to evaluate the quantity of cleaved caspase-3, cytosol cytochrome c, and Bcl-x(L) expression. L-carnitine inhibited doxorubicin-induced reactive oxygen species generation and NADPH oxidase activation, reduced the quantity of cleaved caspase-3 and cytosol cytochrome c, and increased Bcl-x(L) expression, resulting in protecting cardiomyocytes from doxorubicin-induced apoptosis. In addition, L-carnitine was found to increase the prostacyclin (PGI(2)) generation in cardiomyocytes. The siRNA transfection for PGI(2) synthase significantly reduced L-carnitine-induced PGI(2) and L-carnitine's protective effect. Furthermore, blockade the potential PGI(2) receptors, including PGI(2) receptors (IP receptors), and peroxisome proliferator-activated receptors alpha and delta (PPARα and PPARδ), revealed that the siRNA-mediated blockage of PPARα considerably reduced the anti-apoptotic effect of L-carnitine. These findings suggest that L-carnitine protects cardiomyocytes from doxorubicin-induced apoptosis in part through PGI(2) and PPARα-signaling pathways, which may potentially protect the heart from the severe toxicity of doxorubicin. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

          Related collections

          Author and article information

          Journal
          International Journal of Cardiology
          International Journal of Cardiology
          Elsevier BV
          01675273
          January 2011
          January 2011
          : 146
          : 2
          : 145-152
          Article
          10.1016/j.ijcard.2009.06.010
          19552975
          c611f179-550e-401a-acfe-45c1c9b57ab1
          © 2011

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article