16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The yeast Lachancea thermotolerans (previously Kluyveromyces thermotolerans) is a species of large, yet underexplored, oenological potential. This study delivers comprehensive oenological phenomes of 94  L. thermotolerans strains obtained from diverse ecological niches worldwide, classified in nine genetic groups based on their pre-determined microsatellite genotypes. The strains and the genetic groups were compared for their alcoholic fermentation performance, production of primary and secondary metabolites and pH modulation in Chardonnay grape juice fermentations. The common oenological features of L. thermotolerans strains were their glucophilic character, relatively extensive fermentation ability, low production of acetic acid and the formation of lactic acid, which significantly affected the pH of the wines. An untargeted analysis of volatile compounds, used for the first time in a population-scale phenotyping of a non- Saccharomyces yeast, revealed that 58 out of 90 volatiles were affected at an L. thermotolerans strain level. Besides the remarkable extent of intra-specific diversity, our results confirmed the distinct phenotypic performance of L. thermotolerans genetic groups. Together, these observations provide further support for the occurrence of domestication events and allopatric differentiation in L. thermotolerans population.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

          Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.

            Non-Saccharomyces yeasts are metabolically active during spontaneous and inoculated must fermentations, and by producing a plethora of by-products, they can contribute to the definition of the wine aroma. Thus, use of Saccharomyces and non-Saccharomyces yeasts as mixed starter cultures for inoculation of wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. We initially characterized 34 non-Saccharomyces yeasts of the genera Candida, Lachancea (Kluyveromyces), Metschnikowia and Torulaspora, and evaluated their enological potential. This confirmed that non-Saccharomyces yeasts from wine-related environments represent a rich sink of unexplored biodiversity for the winemaking industry. From these, we selected four non-Saccharomyces yeasts to combine with starter cultures of Saccharomyces cerevisiae in mixed fermentation trials. The kinetics of growth and fermentation, and the analytical profiles of the wines produced indicate that these non-Saccharomyces strains can be used with S. cerevisiae starter cultures to increase polysaccharide, glycerol and volatile compound production, to reduce volatile acidity, and to increase or reduce the total acidity of the final wines, depending on yeast species and inoculum ratio used. The overall effects of the non-Saccharomyces yeasts on fermentation and wine quality were strictly dependent on the Saccharomyces/non-Saccharomyces inoculum ratio that mimicked the differences of fermentation conditions (natural or simultaneous inoculated fermentation). Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history.

              Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.
                Bookmark

                Author and article information

                Contributors
                vladimir.jiranek@adelaide.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 October 2018
                4 October 2018
                2018
                : 8
                : 14812
                Affiliations
                [1 ]The Australian Research Council Training Centre for Innovative Wine Production, Adelaide, SA Australia
                [2 ]ISNI 0000 0004 1936 7304, GRID grid.1010.0, Department of Wine and Food Science, , The University of Adelaide, ; Adelaide, SA Australia
                [3 ]ISNI 0000 0004 0368 0777, GRID grid.1037.5, National Wine and Grape Industry Centre, , School of Agricultural and Wine Science, Charles Sturt University, ; Wagga Wagga, NSW Australia
                [4 ]CSIRO Agriculture and Food, Adelaide, SA Australia
                [5 ]ISNI 0000 0001 2106 639X, GRID grid.412041.2, Unité de recherche Œnologie, Institut de la Science de la Vigne et du Vin, University of Bordeaux, ; Villenave d’Ornon, France
                [6 ]ISNI 0000 0001 0659 4135, GRID grid.434203.2, Bordeaux Sciences Agro, ; Gradignan, France
                [7 ]ISNI 0000 0004 1781 203X, GRID grid.424725.2, ENSCBP, Bordeaux INP, ; Pessac, France
                Author information
                http://orcid.org/0000-0002-6687-9834
                http://orcid.org/0000-0001-9765-5510
                http://orcid.org/0000-0003-0356-9342
                http://orcid.org/0000-0002-7997-6131
                http://orcid.org/0000-0002-9775-8963
                Article
                33105
                10.1038/s41598-018-33105-7
                6172252
                30287912
                c614bcfe-62e8-492c-b84f-ac6695c1ae04
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 May 2018
                : 18 September 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000923, Australian Research Council (ARC);
                Award ID: IC130100005
                Award ID: IC130100005
                Award Recipient :
                Funded by: Charles Sturt University Faculty of Science Postgraduate Scholarship
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article