9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neutrophils play a central role in innate immunity, inflammation, and resolution. Unresolving neutrophilia features as a disrupted inflammatory process in the airways of patients with chronic obstructive pulmonary disease (COPD) and severe asthma. The extent to which this may be linked to disease pathobiology remains obscure and could be further confounded by indication of glucocorticoids or concomitant respiratory infections. The formation of neutrophil extracellular traps (NETs) represents a specialized host defense mechanism that entrap and eliminate invading microbes. NETs are web-like scaffolds of extracellular DNA in complex with histones and neutrophil granular proteins, such as myeloperoxidase and neutrophil elastase. Distinct from apoptosis, NET formation is an active form of cell death that could be triggered by various microbial, inflammatory, and endogenous or exogenous stimuli. NETs are reportedly enriched in neutrophil-dominant refractory lung diseases, such as COPD and severe asthma. Evidence for a pathogenic role for respiratory viruses (e.g., Rhinovirus), bacteria (e.g., Staphylococcus aureus) and fungi (e.g., Aspergillus fumigatus) in NET induction is emerging. Dysregulation of this process may exert localized NET burden and contribute to NETopathic lung inflammation. Disentangling the role of NETs in human health and disease offer unique opportunities for therapeutic modulation. The chemokine CXCR2 receptor regulates neutrophil activation and migration, and small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways. NET-stabilizing agents using CXCR2 antagonists are being investigated in proof-of-concept studies in patients with COPD to provide mechanistic insights. Clinical validation of this type could lead to novel therapeutics for multiple CXCR2-related NETopathologies. In this Review, we discuss the emerging role of NETs in the clinicopathobiology of COPD and severe asthma and provide an outlook on how novel NET-stabilizing therapies via CXCR2 blockade could be leveraged to disrupt NETopathic inflammation in disease-specific phenotypes.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones

          Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis

            Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Respiratory viruses and exacerbations of asthma in adults.

              To study the role of respiratory viruses in exacerbations of asthma in adults. Longitudinal study of 138 adults with asthma. Leicestershire Health Authority. 48 men and 90 women 19-46 years of age with a mean duration of wheeze of 19.6 years. 75% received regular treatment with bronchodilators; 89% gave a history of eczema, hay fever, allergic rhinitis, nasal polyps, or allergies; 38% had been admitted to hospital with asthma. Symptomatic colds and asthma exacerbations; objective exacerbations of asthma with > or = 50 l/min reduction in mean peak expiratory flow rate when morning and night time readings on days 1-7 after onset of symptoms were compared with rates during an asymptomatic control period; laboratory confirmed respiratory tract infections. Colds were reported in 80% (223/280) of episodes with symptoms of wheeze, chest tightness, or breathlessness, and 89% (223/250) of colds were associated with asthma symptoms. 24% of 115 laboratory confirmed non-bacterial infections were associated with reductions in mean peak expiratory flow rate > or = 50 l/min through days 1-7 and 48% had mean decreases > or = 25 l/min. 44% of episodes with mean decreases in flow rate > or = 50 l/min were associated with laboratory confirmed infections. Infections with rhinoviruses, coronaviruses OC43 and 229E, influenza B, respiratory syncytial virus, parainfluenza virus, and chlamydia were all associated with objective evidence of an exacerbation of asthma. These findings show that asthma symptoms and reductions in peak flow are often associated with colds and respiratory viruses; respiratory virus infections commonly cause or are associated with exacerbations of asthma in adults.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                05 February 2019
                2019
                : 10
                : 47
                Affiliations
                [1] 1Respiratory Global Medicines Development, AstraZeneca , Gothenburg, Sweden
                [2] 2Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca , Gothenburg, Sweden
                [3] 3Pulmonary Research Institute at LungenClinic , Großhansdorf, Germany
                [4] 4Airway Research Center North (ARCN), German Center for Lung Research (DZL) , Großhansdorf, Germany
                [5] 5LungenClinic , Großhansdorf, Germany
                Author notes

                Edited by: Cees Van Kooten, Leiden University, Netherlands

                Reviewed by: Yi Zhao, Sichuan University, China; Rostyslav Bilyy, Danylo Halytsky Lviv National Medical University, Ukraine

                *Correspondence: Mohib Uddin mohib.uddin@ 123456astrazeneca.com

                This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.00047
                6370641
                30804927
                c6287614-bb91-4b40-9306-83c9a337eccf
                Copyright © 2019 Uddin, Watz, Malmgren and Pedersen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2018
                : 09 January 2019
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 129, Pages: 10, Words: 8390
                Funding
                Funded by: AstraZeneca 10.13039/100004325
                Categories
                Immunology
                Mini Review

                Immunology
                airway,asthma,copd,cxcr2,neutrophil extracellular traps (nets),netopathic inflammation
                Immunology
                airway, asthma, copd, cxcr2, neutrophil extracellular traps (nets), netopathic inflammation

                Comments

                Comment on this article