1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomarkers for visceral hypersensitivity in patients with irritable bowel syndrome

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome.

          The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors.

            Abdominal pain is common in the general population and, in patients with irritable bowel syndrome, is attributed to visceral hypersensitivity. We found that oral administration of specific Lactobacillus strains induced the expression of mu-opioid and cannabinoid receptors in intestinal epithelial cells, and mediated analgesic functions in the gut-similar to the effects of morphine. These results suggest that the microbiology of the intestinal tract influences our visceral perception, and suggest new approaches for the treatment of abdominal pain and irritable bowel syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              5-Hydroxytryptamine (serotonin) in the gastrointestinal tract.

              Although the gut contains most of the body's 5-hydroxytryptamine (5-HT), many of its most important functions have recently been discovered. This review summarizes and directs attention to this new burst of knowledge. Enteroendocrine cells have classically been regarded as pressure sensors, which secrete 5-HT to initiate peristaltic reflexes; nevertheless, recent data obtained from studies of mice that selectively lack 5-HT either in enterochromaffin cells (deletion of tryptophan hydroxylase 1 knockout; TPH1KO) or neurons (TPH2KO) imply that neuronal 5-HT is more important for constitutive gastrointestinal transit than that of enteroendocrine cells. The enteric nervous system of TPH2KO mice, however, also lacks a full complement of neurons; therefore, it is not clear whether slow transit in TPH2KO animals is due to their neuronal deficiency or absence of serotonergic neurotransmission. Neuronal 5-HT promotes the growth/maintenance of the mucosa as well as neurogenesis. Enteroendocrine cell derived 5-HT is an essential component of the gastrointestinal inflammatory response; thus, deletion of the serotonin transporter increases, whereas TPH1KO decreases the severity of intestinal inflammation. Enteroendocrine cell derived 5-HT, moreover, is also a hormone, which inhibits osteoblast proliferation and promotes hepatic regeneration. New studies show that enteric 5-HT is a polyfunctional signalling molecule, acting both in developing and mature animals as a neurotransmitter paracrine factor, endocrine hormone and growth factor.
                Bookmark

                Author and article information

                Journal
                Neurogastroenterology & Motility
                Neurogastroenterol Motil
                Wiley
                13501925
                December 2017
                December 2017
                July 03 2017
                : 29
                : 12
                : e13137
                Affiliations
                [1 ]Division of Gastroenterology-Hepatology; Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism; Maastricht University Medical Center+; Maastricht The Netherlands
                [2 ]Top Institute Food & Nutrition (TiFN); Wageningen The Netherlands
                [3 ]Department of Psychiatry and Psychology; Maastricht University Medical Center+; Maastricht The Netherlands
                [4 ]Department of Pharmacology and Toxicology; NUTRIM School for Nutrition, and Translational Research in Metabolism; Maastricht University Medical Centre+; Maastricht The Netherlands
                Article
                10.1111/nmo.13137
                c62adac2-2c94-462c-a78b-bee797b9cea5
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article