243
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Peritoneal tumor spread in serous ovarian cancer-epithelial mesenchymal status and outcome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study we aimed to analyze the biological mechanisms underlying apparently different modes of peritoneal tumor spread in serous ovarian cancer: miliary (widespread, millet-like lesions) versus non-miliary (bigger, exophytically growing implants). Tumor tissues and ascites from 23 chemotherapy naive patients were analyzed by RNA-sequencing and flow cytometry. On the basis of differential gene expression between miliary and non-miliary, gene signatures were developed. A calculated tumor spread factor revealed a significant independent negative impact of miliary spread on overall survival (HR 3.77; CI 95 1.14–12.39; p = 0.029) in an independent cohort of 165 serous ovarian cancer patients. Comparing previously published epithelial-mesenchymal transition (EMT) gene signatures, non-miliary spread correlated significantly with a reduced epithelial status. We conclude that serous ovarian cancer is a heterogeneous disease with distinct modes of peritoneal tumor spread, differing not only in clinical appearance, but also in molecular characteristics and outcome.. EMT, peritoneal inflammation status, and therapeutic options are discussed.

          Significance

          More than half of serous epithelial ovarian cancer patients present with a newly described type of intraperitoneal tumor spread, associated with differences in the inflammation status, activated oncogenic pathways, lack of EMT, and thus reduced overall survival. Both, the diminished immune reaction and the enhanced epithelial and malignant characteristics of the tumor cells open new avenues for therapeutic options and strategies, like Catumaxomab, already in clinical use.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients

          Epithelial-mesenchymal transition (EMT) is a reversible and dynamic process hypothesized to be co-opted by carcinoma during invasion and metastasis. Yet, there is still no quantitative measure to assess the interplay between EMT and cancer progression. Here, we derived a method for universal EMT scoring from cancer-specific transcriptomic EMT signatures of ovarian, breast, bladder, lung, colorectal and gastric cancers. We show that EMT scoring exhibits good correlation with previously published, cancer-specific EMT signatures. This universal and quantitative EMT scoring was used to establish an EMT spectrum across various cancers, with good correlation noted between cell lines and tumours. We show correlations between EMT and poorer disease-free survival in ovarian and colorectal, but not breast, carcinomas, despite previous notions. Importantly, we found distinct responses between epithelial- and mesenchymal-like ovarian cancers to therapeutic regimes administered with or without paclitaxelin vivo and demonstrated that mesenchymal-like tumours do not always show resistance to chemotherapy. EMT scoring is thus a promising, versatile tool for the objective and systematic investigation of EMT roles and dynamics in cancer progression, treatment response and survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer.

            To compare clinical, immunohistochemical (IHC), and gene expression models of prognosis applicable to formalin-fixed, paraffin-embedded blocks in a large series of estrogen receptor (ER)-positive breast cancers from patients uniformly treated with adjuvant tamoxifen. Quantitative real-time reverse transcription-PCR (qRT-PCR) assays for 50 genes identifying intrinsic breast cancer subtypes were completed on 786 specimens linked to clinical (median follow-up, 11.7 years) and IHC [ER, progesterone receptor (PR), HER2, and Ki67] data. Performance of predefined intrinsic subtype and risk-of-relapse scores was assessed using multivariable Cox models and Kaplan-Meier analysis. Harrell's C-index was used to compare fixed models trained in independent data sets, including proliferation signatures. Despite clinical ER positivity, 10% of cases were assigned to nonluminal subtypes. qRT-PCR signatures for proliferation genes gave more prognostic information than clinical assays for hormone receptors or Ki67. In Cox models incorporating standard prognostic variables, hazard ratios for breast cancer disease-specific survival over the first 5 years of follow-up, relative to the most common luminal A subtype, are 1.99 [95% confidence interval (CI), 1.09-3.64] for luminal B, 3.65 (95% CI, 1.64-8.16) for HER2-enriched subtype, and 17.71 (95% CI, 1.71-183.33) for the basal-like subtype. For node-negative disease, PAM50 qRT-PCR-based risk assignment weighted for tumor size and proliferation identifies a group with >95% 10-year survival without chemotherapy. In node-positive disease, PAM50-based prognostic models were also superior. The PAM50 gene expression test for intrinsic biological subtype can be applied to large series of formalin-fixed, paraffin-embedded breast cancers, and gives more prognostic information than clinical factors and IHC using standard cut points. ©2010 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anoikis: an emerging hallmark in health and diseases.

              Anoikis is a programmed cell death occurring upon cell detachment from the correct extracellular matrix, thus disrupting integrin ligation. It is a critical mechanism in preventing dysplastic cell growth or attachment to an inappropriate matrix. Anoikis prevents detached epithelial cells from colonizing elsewhere and is thus essential for tissue homeostasis and development. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are crucial steps during tumour progression and metastatic spreading of cancer cells, anoikis deregulation has now evoked particular attention from the scientific community. The aim of this review is to analyse the molecular mechanisms governing both anoikis and anoikis resistance, focusing on their regulation in physiological processes, as well as in several diseases, including metastatic cancers, cardiovascular diseases and diabetes. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                10 July 2015
                11 May 2015
                : 6
                : 19
                : 17261-17275
                Affiliations
                1 Department of Obstetrics and Gynecology, Comprehensive Cancer Center (CCC), Medical University of Vienna and Ludwig Boltzmann Cluster Translational Oncology, Vienna, Austria
                2 Department of Pathology, Medical University of Vienna, Vienna, Austria
                Author notes
                Correspondence to: Dietmar Pils, dietmar.pils@ 123456univie.ac.at
                Article
                10.18632/oncotarget.3746
                4627306
                25991672
                c632c3b5-3c84-480e-a399-ecaf12f6a73c
                Copyright: © 2015 Auer et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 February 2015
                : 28 April 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                epithelial ovarian cancer,peritoneal tumor spread,flow cytometric analysis,rna-sequencing,next generation sequencing

                Comments

                Comment on this article