In this paper a novel step length model using a handheld Micro Electrical Mechanical System (MEMS) is presented. It combines the user's step frequency and height with a set of three parameters for estimating step length. The model has been developed and trained using 12 different subjects: six men and six women. For reliable estimation of the step frequency with a handheld device, the frequency content of the handheld sensor's signal is extracted by applying the Short Time Fourier Transform (STFT) independently from the step detection process. The relationship between step and hand frequencies is analyzed for different hand's motions and sensor carrying modes. For this purpose, the frequency content of synchronized signals collected with two sensors placed in the hand and on the foot of a pedestrian has been extracted. Performance of the proposed step length model is assessed with several field tests involving 10 test subjects different from the above 12. The percentages of error over the travelled distance using universal parameters and a set of parameters calibrated for each subject are compared. The fitted solutions show an error between 2.5 and 5% of the travelled distance, which is comparable with that achieved by models proposed in the literature for body fixed sensors only.