+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          World events over the past decade have highlighted the threat of nuclear terrorism as well as an urgent need to develop radiation countermeasures for acute radiation exposures and subsequent bodily injuries. An increased probability of radiological or nuclear incidents due to detonation of nuclear weapons by terrorists, sabotage of nuclear facilities, dispersal and exposure to radioactive materials, and accidents provides the basis for such enhanced radiation exposure risks for civilian populations. Although the search for suitable radiation countermeasures for radiation-associated injuries was initiated more than half a century ago, no safe and effective radiation countermeasure for the most severe of these injuries, namely acute radiation syndrome (ARS), has been approved by the United States Food and Drug Administration (FDA). The dearth of FDA-approved radiation countermeasures has prompted intensified research for a new generation of radiation countermeasures. In this communication, the authors have listed and reviewed the status of radiation countermeasures that are currently available for use, or those that might be used for exceptional nuclear/radiological contingencies, plus a limited few medicines that show early promise but still remain experimental in nature and unauthorized for human use by the FDA.

          Related collections

          Most cited references 130

          • Record: found
          • Abstract: found
          • Article: not found

          Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group.

          Physicians, hospitals, and other health care facilities will assume the responsibility for aiding individuals injured by a terrorist act involving radioactive material. Scenarios have been developed for such acts that include a range of exposures resulting in few to many casualties. This consensus document was developed by the Strategic National Stockpile Radiation Working Group to provide a framework for physicians in internal medicine and the medical subspecialties to evaluate and manage large-scale radiation injuries. Individual radiation dose is assessed by determining the time to onset and severity of nausea and vomiting, decline in absolute lymphocyte count over several hours or days after exposure, and appearance of chromosome aberrations (including dicentrics and ring forms) in peripheral blood lymphocytes. Documentation of clinical signs and symptoms (affecting the hematopoietic, gastrointestinal, cerebrovascular, and cutaneous systems) over time is essential for triage of victims, selection of therapy, and assignment of prognosis. Recommendations based on radiation dose and physiologic response are made for treatment of the hematopoietic syndrome. Therapy includes treatment with hematopoietic cytokines; blood transfusion; and, in selected cases, stem-cell transplantation. Additional medical management based on the evolution of clinical signs and symptoms includes the use of antimicrobial agents (quinolones, antiviral therapy, and antifungal agents), antiemetic agents, and analgesic agents. Because of the strong psychological impact of a possible radiation exposure, psychosocial support will be required for those exposed, regardless of the dose, as well as for family and friends. Treatment of pregnant women must account for risk to the fetus. For terrorist or accidental events involving exposure to radioiodines, prophylaxis against malignant disease of the thyroid is also recommended, particularly for children and adolescents.
            • Record: found
            • Abstract: not found
            • Article: not found

            Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man.

              • Record: found
              • Abstract: found
              • Article: not found

              Animal models for medical countermeasures to radiation exposure.

              Since September 11, 2001, there has been the recognition of a plausible threat from acts of terrorism, including radiological or nuclear attacks. A network of Centers for Medical Countermeasures against Radiation (CMCRs) has been established across the U.S.; one of the missions of this network is to identify and develop mitigating agents that can be used to treat the civilian population after a radiological event. The development of such agents requires comparison of data from many sources and accumulation of information consistent with the "Animal Rule" from the Food and Drug Administration (FDA). Given the necessity for a consensus on appropriate animal model use across the network to allow for comparative studies to be performed across institutions, and to identify pivotal studies and facilitate FDA approval, in early 2008, investigators from each of the CMCRs organized and met for an Animal Models Workshop. Working groups deliberated and discussed the wide range of animal models available for assessing agent efficacy in a number of relevant tissues and organs, including the immune and hematopoietic systems, gastrointestinal tract, lung, kidney and skin. Discussions covered the most appropriate species and strains available as well as other factors that may affect differential findings between groups and institutions. This report provides the workshop findings.

                Author and article information

                Health Phys
                Health Phys
                Health Physics
                Lippincott Williams & Wilkins
                June 2015
                08 May 2015
                : 108
                : 6
                : 607-630
                *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD.
                Author notes
                For correspondence contact: Vijay K. Singh, Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889‐5603, or email at vijay.singh@ .
                HP140158 00006
                Copyright © 2015 Health Physics Society

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

                Review Paper
                Custom metadata


                Comment on this article