2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia

      ,
      Biology
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human exposure to highly nickel (Ni)-polluted environments through oral ingestion pathways may cause various pathological effects. This biomonitoring study aimed to assess the human health risk of potentially toxic Ni in 19 species of marine fishes from Setiu (Terengganu) and two popular seafood molluscs (mangrove snail Cerithidea obtusa and cockle Anadara granosa) from the coastal area of Peninsular Malaysia. The Ni levels of the three seafood types were found below the maximum permissible limit for Ni. The Ni target hazard quotient values of all seafood were lower than 1.00 for average and high-level (AHL) Malaysian consumers, indicating no Ni’s non-carcinogenic risk of seafood consumption. It was also found that the calculated values of estimated weekly intake were below than established provisional tolerable weekly intake of Ni for both AHL consumers. It can be concluded that both the AHL consumption of seafood would not pose adverse effects of Ni to the consumers. This study provided a scientific basis for the food safety assessment of Ni and suggestions for risk management of potentially toxic Ni of seafood consumption in Malaysia.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nickel: Human Health and Environmental Toxicology

          Nickel is a transition element extensively distributed in the environment, air, water, and soil. It may derive from natural sources and anthropogenic activity. Although nickel is ubiquitous in the environment, its functional role as a trace element for animals and human beings has not been yet recognized. Environmental pollution from nickel may be due to industry, the use of liquid and solid fuels, as well as municipal and industrial waste. Nickel contact can cause a variety of side effects on human health, such as allergy, cardiovascular and kidney diseases, lung fibrosis, lung and nasal cancer. Although the molecular mechanisms of nickel-induced toxicity are not yet clear, mitochondrial dysfunctions and oxidative stress are thought to have a primary and crucial role in the toxicity of this metal. Recently, researchers, trying to characterize the capability of nickel to induce cancer, have found out that epigenetic alterations induced by nickel exposure can perturb the genome. The purpose of this review is to describe the chemical features of nickel in human beings and the mechanisms of its toxicity. Furthermore, the attention is focused on strategies to remove nickel from the environment, such as phytoremediation and phytomining.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heavy metals in marine fish meat and consumer health: a review.

            The numerous health benefits provided by fish consumption may be compromised by the presence of toxic metals and metalloids such as lead, cadmium, arsenic and mercury, which can have harmful effects on the human body if consumed in toxic quantities. The monitoring of metal concentrations in fish meat is therefore important to ensure compliance with food safety regulations and consequent consumer protection. The toxicity of these metals may be dependent on their chemical forms, which requires metal speciation processes for direct measurement of toxic metal species or the identification of prediction models in order to determine toxic metal forms from measured total metal concentrations. This review addresses various shortcomings in current knowledge and research on the accumulation of metal contaminants in commercially consumed marine fish globally and particularly in South Africa, affecting both the fishing industry as well as fish consumers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trace metal contamination in estuarine and coastal environments in China.

              Rapid growth of the economy in China has been coupled with increasing environmental pollution. The coastal and estuarine ecosystems in China are now facing increasing metal pollution pressures because of the elevated metal discharges from various sources. Industrial and domestic sewage discharges, mining, smelting, e-wastes recycling are important sources contributing to coastal pollution in China. In this review, status of metal contamination along China's coasts is assessed by a comprehensive review of metal concentrations recorded in sediments and marine organisms over the past ten years. Studies show that metal contamination in the coastal environments is closely associated with accelerated economic growth in the past decades. High metal contents can be detected in the sediments collected across the coasts in China. Alarmingly high metal concentrations are observed in the sediments, water and organisms collected from the heavily industrialized areas. Metal levels observed in marine bivalves also consistently reflect the elevated metal contamination. Elevated levels of metal contamination along China's coastal environment can increase the risk of metal exposure to humans by seafood consumption, raising the alarm for more stringent control of discharge of metals into environment. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BBSIBX
                Biology
                Biology
                MDPI AG
                2079-7737
                March 2022
                February 27 2022
                : 11
                : 3
                : 376
                Article
                10.3390/biology11030376
                35336750
                c654f128-0bb7-4372-bfc4-b8544a038f91
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History
                Product
                Self URI (article page): https://www.mdpi.com/2079-7737/11/3/376

                Comments

                Comment on this article