26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone morphogenetic protein 7 (BMP7) promotes the differentiation of Langerhans cells in the epidermis during prenatal development.

          Abstract

          Human Langerhans cell (LC) precursors populate the epidermis early during prenatal development and thereafter undergo massive proliferation. The prototypic antiproliferative cytokine TGF-β1 is required for LC differentiation from human CD34 + hematopoietic progenitor cells and blood monocytes in vitro. Similarly, TGF-β1 deficiency results in LC loss in vivo. However, immunohistology studies revealed that human LC niches in early prenatal epidermis and adult basal (germinal) keratinocyte layers lack detectable TGF-β1. Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-β1–ALK5 signaling. Conversely, TGF-β1–induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-β1–driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-β1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-β1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-β1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          TGF-beta signal transduction.

          The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility.

            Ligands of the transforming growth factor-beta (TGFbeta) superfamily of growth factors initiate signal transduction through a bewildering complexity of ligand-receptor interactions. Signalling then converges to nuclear accumulation of transcriptionally active SMAD complexes and gives rise to a plethora of specific functional responses in both embryos and adult organisms. Current research is focused on the mechanisms that regulate SMAD activity to evoke cell-type-specific and context-dependent transcriptional programmes. An equally important challenge is understanding the functional role of signal strength and duration. How are these quantitative aspects of the extracellular signal regulated? How are they then sensed and interpreted, and how do they affect responses?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Langerhans cells renew in the skin throughout life under steady-state conditions.

              Langerhans cells (LCs) are bone marrow (BM)-derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                18 November 2013
                : 210
                : 12
                : 2597-2610
                Affiliations
                [1 ]Institute of Pathophysiology and Immunology, Center for Molecular Medicine and [2 ]Center for Medical Research, Medical University Graz, A-8036 Graz, Austria
                [3 ]Institute of Immunology, Center of Pathophysiology, Infectiology, and Immunology ; and [4 ]Laboratory of Cellular and Molecular Immunobiology of the Skin, Department of Dermatology, Division of Immunology, Allergy, and Infectious Diseases; Medical University of Vienna, A-1090 Vienna, Austria
                [5 ]Orofacial Development and Regeneration, Institute of Oral Biology, Center for Dental Medicine, University of Zurich, CH-8006 Zurich, Switzerland
                Author notes
                CORRESPONDENCE Herbert Strobl: herbert.strobl@ 123456medunigraz.at
                Article
                20130275
                10.1084/jem.20130275
                3832935
                24190429
                c655b585-b822-4fe5-bc63-e458cd47558e
                © 2013 Yasmin et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 7 February 2013
                : 7 October 2013
                Categories
                309
                Article

                Medicine
                Medicine

                Comments

                Comment on this article