99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-Precision, Whole-Genome Sequencing of Laboratory Strains Facilitates Genetic Studies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms.

          Author Summary

          In this manuscript, we describe novel applications of the newly developed Solexa sequencing technology. We aim to provide insights into the following questions: (1) Can whole-genome sequencing, while rapidly surveying mega-bases of genome information, also reliably identify variations at the base-pair resolution? (2) Can it be used to identify the differences between isolates of the same laboratory strain and between different laboratory strains? (3) Can it be used as a genetic tool to predict phenotypes and identify suppressors? To this end, we performed whole-genome shotgun sequencing of several related strains of the widely studied model bacterium Bacillus subtilis, we identified genomic variations that potentially underlie strain-specific phenotypes, which occur frequently in biological studies, and we found multiple suppressor mutations within a single strain that are difficult to discern through traditional methods. We conclude that whole-genome sequencing can be directly used to guide genetic studies.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification of common molecular subsequences.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutation as a stress response and the regulation of evolvability.

            Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome sequencing and variant discovery in C. elegans.

              Massively parallel sequencing instruments enable rapid and inexpensive DNA sequence data production. Because these instruments are new, their data require characterization with respect to accuracy and utility. To address this, we sequenced a Caernohabditis elegans N2 Bristol strain isolate using the Solexa Sequence Analyzer, and compared the reads to the reference genome to characterize the data and to evaluate coverage and representation. Massively parallel sequencing facilitates strain-to-reference comparison for genome-wide sequence variant discovery. Owing to the short-read-length sequences produced, we developed a revised approach to determine the regions of the genome to which short reads could be uniquely mapped. We then aligned Solexa reads from C. elegans strain CB4858 to the reference, and screened for single-nucleotide polymorphisms (SNPs) and small indels. This study demonstrates the utility of massively parallel short read sequencing for whole genome resequencing and for accurate discovery of genome-wide polymorphisms.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2008
                August 2008
                1 August 2008
                : 4
                : 8
                : e1000139
                Affiliations
                [1 ]Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
                [2 ]Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: AS RG JDW RC. Performed the experiments: AS YH JP AKT. Analyzed the data: AS YH JDW RC. Contributed reagents/materials/analysis tools: RG RC. Wrote the paper: AS JDW RC.

                Article
                08-PLGE-RA-0150R2
                10.1371/journal.pgen.1000139
                2474695
                18670626
                c65b0cc9-5f96-4073-9651-2b634c59f2a5
                Srivatsan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 February 2008
                : 23 June 2008
                Page count
                Pages: 14
                Categories
                Research Article
                Genetics and Genomics/Genomics
                Genetics and Genomics/Microbial Evolution and Genomics
                Microbiology/Microbial Physiology and Metabolism

                Genetics
                Genetics

                Comments

                Comment on this article