17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Introduction to quantum noise, measurement, and amplification

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.

          The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Brownian Motion of a Quantum Oscillator

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single spin detection by magnetic resonance force microscopy.

              Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 micro m remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 10(12) nuclear spins for MRI-based microscopy, or 10(7) electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.
                Bookmark

                Author and article information

                Journal
                RMPHAT
                Reviews of Modern Physics
                Rev. Mod. Phys.
                American Physical Society (APS)
                0034-6861
                1539-0756
                April 2010
                April 15 2010
                : 82
                : 2
                : 1155-1208
                Article
                10.1103/RevModPhys.82.1155
                c65e2aaf-24fa-4968-bc2c-d948f6d8fc8c
                © 2010

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article