2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reversibility of platelet P2Y12 inhibition by platelet supplementation: ex vivo and in vitro comparisons of prasugrel, clopidogrel and ticagrelor

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ticagrelor: Pharmacokinetics, Pharmacodynamics, Clinical Efficacy, and Safety

          Dual antiplatelet therapy, composed of aspirin plus a P2Y12-receptor antagonist, is the cornerstone of treatment for patients with acute coronary syndrome (ACS). A number of U.S. Food and Drug Administration–approved P2Y12-receptor antagonists are available for treating patients with ACS, including the thienopyridine compounds clopidogrel and prasugrel. Ticagrelor, the first of a new class of antiplatelet agents, is a noncompetitive, direct-acting P2Y12-receptor antagonist. Unlike the thienopyridine compounds, ticagrelor does not require metabolism for activity. Also, whereas clopidogrel and prasugrel are irreversible inhibitors of the P2Y12 receptor, ticagrelor binds reversibly to inhibit receptor signaling and subsequent platelet activation. In pharmacodynamic studies, ticagrelor demonstrated faster onset and more potent inhibition of platelet aggregation than clopidogrel. These properties of ticagrelor may contribute to reduced rates of thrombotic outcomes compared with clopidogrel, as demonstrated in a phase III clinical trial. However, in addition to bleeding, distinctive adverse effects of this new chemical entity have not been reported with the thienopyridine P2Y12-receptor inhibitors. Although ticagrelor represents an advancement in P2Y12-receptor inhibition therapy, a thorough understanding of this compound as an antiplatelet therapy remains to be elucidated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently.

            Prasugrel and clopidogrel inhibit platelet aggregation through active metabolite formation. Prasugrel's active metabolite (R-138727) is formed primarily by cytochrome P450 (CYP) 3A and CYP2B6, with roles for CYP2C9 and CYP2C19. Clopidogrel's activation involves two sequential steps by CYP3A, CYP1A2, CYP2C9, CYP2C19, and/or CYP2B6. In a randomized crossover study, healthy subjects received a loading dose (LD) of prasugrel (60 mg) or clopidogrel (300 mg), followed by five daily maintenance doses (MDs) (15 and 75 mg, respectively) with or without the potent CYP3A inhibitor ketoconazole (400 mg/day). Subjects had a 2-week washout between periods. Ketoconazole decreased R-138727 and clopidogrel active metabolite Cmax (maximum plasma concentration) 34-61% after prasugrel and clopidogrel dosing. Ketoconazole did not affect R-138727 exposure or prasugrel's inhibition of platelet aggregation (IPA). Ketoconazole decreased clopidogrel's active metabolite AUC0-24 (area under the concentration-time curve to 24 h postdose) 22% (LD) to 29% (MD) and reduced IPA 28% (LD) to 33% (MD). We conclude that CYP3A4 and CYP3A5 inhibition by ketoconazole affects formation of clopidogrel's but not prasugrel's active metabolite. The decreased formation of clopidogrel's active metabolite is associated with reduced IPA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and functional characterization of a specific antidote for ticagrelor.

              Ticagrelor is a direct-acting reversibly binding P2Y12 antagonist and is widely used as an antiplatelet therapy for the prevention of cardiovascular events in acute coronary syndrome patients. However, antiplatelet therapy can be associated with an increased risk of bleeding. Here, we present data on the identification and the in vitro and in vivo pharmacology of an antigen-binding fragment (Fab) antidote for ticagrelor. The Fab has a 20 pM affinity for ticagrelor, which is 100 times stronger than ticagrelor's affinity for its target, P2Y12. Despite ticagrelor's structural similarities to adenosine, the Fab is highly specific and does not bind to adenosine, adenosine triphosphate, adenosine 5'-diphosphate, or structurally related drugs. The antidote concentration-dependently neutralized the free fraction of ticagrelor and reversed its antiplatelet activity both in vitro in human platelet-rich plasma and in vivo in mice. Lastly, the antidote proved effective in normalizing ticagrelor-dependent bleeding in a mouse model of acute surgery. This specific antidote for ticagrelor may prove valuable as an agent for patients who require emergency procedures.
                Bookmark

                Author and article information

                Journal
                Journal of Thrombosis and Haemostasis
                J Thromb Haemost
                Wiley
                15387933
                June 2018
                June 2018
                April 23 2018
                : 16
                : 6
                : 1089-1098
                Affiliations
                [1 ]Department of Anaesthesiology; Intensive Care and Pain Medicine; University Hospital Muenster; Muenster Germany
                [2 ]Experimental and Clinical Haemostasis; University Hospital Muenster; Muenster Germany
                [3 ]Institute of Pharmacology; University Hospital Essen; Essen Germany
                [4 ]Institute of Transfusion Medicine; University Hospital Muenster; Muenster Germany
                [5 ]Department of Cardiovascular Medicine; University Hospital Muenster; Muenster Germany
                [6 ]Lilly Research Laboratories; Eli Lilly and Company; Indianapolis IN USA
                Article
                10.1111/jth.14014
                c6602ba8-793a-4e0a-b838-45ea0c6b0e5f
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article