18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      P2Y13 Receptor Regulates HDL Metabolism and Atherosclerosis In Vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-density lipoprotein (HDL) is known to protect against atherosclerosis by promoting the reverse cholesterol transport. A new pathway for the regulation of HDL-cholesterol (HDL-c) removal involving F1-ATPase and P2Y13 receptor (P2Y13R) was described in vitro, and recently in mice. However, the physiological role of F1-ATPase/P2Y13R pathway in the modulation of vascular pathology i.e. in the development of atherosclerotic plaques is still unknown. We designed a specific novel agonist (CT1007900) of the P2Y13R that caused stimulation of bile acid secretion associated with an increased uptake of HDL-c in the liver after single dosing in mice. Repeated dose administration in mice, for 2 weeks, stimulated the apoA-I synthesis and formation of small HDL particles. Plasma samples from the agonist-treated mice had high efflux capacity for mobilization of cholesterol in vitro compared to placebo group. In apoE −/− mice this agonist induced a decrease of atherosclerotic plaques in aortas and carotids. The specificity of P2Y13R pathway in those mice was assessed using adenovirus encoding P2Y13R-shRNA. These results demonstrate that P2Y13R plays a pivotal role in the HDL metabolism and could also be a useful therapeutic agent to decrease atherosclerosis. In this study, the up-regulation of HDL-c metabolism via activation of the P2Y13R using agonists could promote reverse cholesterol transport and promote inhibition of atherosclerosis progression in mice.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Myocardial infarction accelerates atherosclerosis

          SUMMARY During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaque in the arterial wall and cause its rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, apoE−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. When seeking the source of surplus monocytes in plaque, we found that myocardial infarction liberated hematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signaling. The progenitors then seeded the spleen yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms.

            The lipoprotein HDL has two important roles: first, it promotes reverse cholesterol transport, and second, it modulates inflammation. Epidemiological studies show that HDL-cholesterol levels are inversely correlated with the risk of cardiovascular events. However, many patients who experience a clinical event have normal, or even high, levels of HDL cholesterol. Measuring HDL-cholesterol levels provides information about the size of the HDL pool, but does not predict HDL composition or function. The main component of HDL, apolipoprotein A-I (apo A-I), is largely responsible for reverse cholesterol transport through the macrophage ATP-binding cassette transporter ABCA1. Apo A-I can be damaged by oxidative mechanisms, which render the protein less able to promote cholesterol efflux. HDL also contains a number of other proteins that are affected by the oxidative environment of the acute-phase response. Modification of the protein components of HDL can convert it from an anti-inflammatory to a proinflammatory particle. Small peptides that mimic some of the properties of apo A-I have been shown in preclinical models to improve HDL function and reduce atherosclerosis without altering HDL-cholesterol levels. Robust assays to evaluate the function of HDL are needed to supplement the measurement of HDL-cholesterol levels in the clinic. © 2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo.

              Macrophage ATP-binding cassette transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI), and ABCG1 have been shown to promote cholesterol efflux to extracellular acceptors in vitro and influence atherosclerosis in mice, but their roles in mediating reverse cholesterol transport (RCT) from macrophages in vivo are unknown. Using an assay of macrophage RCT in mice, we found that primary macrophages lacking ABCA1 had a significant reduction in macrophage RCT in vivo, demonstrating the importance of ABCA1 in promoting macrophage RCT, however substantial residual RCT exists in the absence of macrophage ABCA1. Using primary macrophages deficient in SR-BI expression, we found that macrophage SR-BI, which was shown to promote cholesterol efflux in vitro, does not contribute to macrophage RCT in vivo. To investigate whether macrophage ABCG1 is involved in macrophage RCT in vivo, we used ABCG1-overexpressing, -knockdown, and -knockout macrophages. We show that increased macrophage ABCG1 expression significantly promoted while knockdown or knockout of macrophage ABCG1 expression significantly reduced macrophage RCT in vivo. Finally, we show that there was a greater decrease in macrophage RCT from cells where both ABCA1 and ABCG1 expression were knocked down than from ABCG1-knockdown cells. These results demonstrate that ABCA1 and ABCG1, but not SR-BI, promote macrophage RCT in vivo and are additive in their effects.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                25 April 2014
                : 9
                : 4
                : e95807
                Affiliations
                [1 ]Cerenis Therapeutics SA, Labege, France
                [2 ]Cerenis Therapeutics Inc., Ann Arbor, Michigan, United States of America
                Harvard Medical School, United States of America
                Author notes

                Competing Interests: All authors are Cerenis Therapeutics employees, whose company funded this study. There are patents (# US 8349833) and products in development to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: MG CT NL Rudi Baron Ronald Barbaras. Performed the experiments: MG CT NB GC AB Rudi Baron. Analyzed the data: MG CT NB GC AB NL JLD Rudi Baron Ronald Barbaras. Contributed reagents/materials/analysis tools: MG CT NB GC AB DCO Rudi Baron. Wrote the manuscript: NL Rudi Baron Ronald Barbaras.

                Article
                PONE-D-14-02952
                10.1371/journal.pone.0095807
                4000210
                24769858
                c677369f-06ef-41df-8871-03d66d8684aa
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 January 2014
                : 31 March 2014
                Page count
                Pages: 10
                Funding
                The work was supported by Cerenis Therapeutics. The funder provided support in the form of salaries for all authors, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.
                Categories
                Research Article
                Medicine and Health Sciences
                Vascular Medicine
                Atherosclerosis
                Cardiology
                Cardiovascular Pharmacology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article