12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PSCA promotes prostate cancer proliferation and cell-cycle progression by up-regulating c-Myc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Prostate cancer as a model for tumour immunotherapy.

          Advances in basic immunology have led to an improved understanding of the interactions between the immune system and tumours, generating renewed interest in approaches that aim to treat cancer immunologically. As clinical and preclinical studies of tumour immunotherapy illustrate several immunological principles, a review of these data is broadly instructive and is particularly timely now that several agents are beginning to show evidence of efficacy. This is especially relevant in the case of prostate cancer, as recent approval of sipuleucel-T by the US Food and Drug Administration marks the first antigen-specific immunotherapy approved for cancer treatment. Although this Review focuses on immunotherapy for prostate cancer, the principles discussed are applicable to many tumour types, and the approaches discussed are highlighted in that context.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer.

            Prostate stem cell antigen (PSCA) is a recently defined homologue of the Thy-1/Ly-6 family of glycosylphosphatidylinositol (GPI)-anchored cell surface antigens. PSCA mRNA is expressed in the basal cells of normal prostate and in more than 80% of prostate cancers. The purpose of the present study was to examine PSCA protein expression in clinical specimens of human prostate cancer. Five monoclonal antibodies were raised against a PSCA-GST fusion protein and screened for their ability to recognize PSCA on the cell surface of human prostate cancer cells. Immunohistochemical analysis of PSCA expression was performed on paraffin-embedded sections from 25 normal tissues, 112 primary prostate cancers and nine prostate cancers metastatic to bone. The level of PSCA expression in prostate tumors was quantified and compared with expression in adjacent normal glands. The antibodies detect PSCA expression on the cell surface of normal and malignant prostate cells and distinguish three extracellular epitopes on PSCA. Prostate and transitional epithelium reacted strongly with PSCA. PSCA staining was also seen in placental trophoblasts, renal collecting ducts and neuroendocrine cells in the stomach and colon. All other normal tissues tested were negative. PSCA protein expression was identified in 105/112 (94%) primary prostate tumors and 9/9 (100%) bone metastases. The level of PSCA expression increased with higher Gleason score (P=0.016), higher tumor stage (P=0.010) and progression to androgen-independence (P=0. 021). Intense, homogeneous staining was seen in all nine bone metastases. PSCA is a cell surface protein with limited expression in extraprostatic normal tissues. PSCA expression correlates with tumor stage, grade and androgen independence and may have prognostic utility. Because expression on the surface of prostate cancer cells increases with tumor progression, PSCA may be a useful molecular target in advanced prostate cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metformin targets c-MYC oncogene to prevent prostate cancer.

              Prostate cancer (PCa) is the second leading cause of cancer-related death in American men and many PCa patients develop skeletal metastasis. Current treatment modalities for metastatic PCa are mostly palliative with poor prognosis. Epidemiological studies indicated that patients receiving the diabetic drug metformin have lower PCa risk and better prognosis, suggesting that metformin may have antineoplastic effects. The mechanism by which metformin acts as chemopreventive agent to impede PCa initiation and progression is unknown. The amplification of c-MYC oncogene plays a key role in early prostate epithelia cell transformation and PCa growth. The purpose of this study is to investigate the effect of metformin on c-myc expression and PCa progression. Our results demonstrated that (i) in Hi-Myc mice that display murine prostate neoplasia and highly resemble the progression of human prostate tumors, metformin attenuated the development of prostate intraepithelial neoplasia (PIN, the precancerous lesion of prostate) and PCa lesions. (ii) Metformin reduced c-myc protein levels in vivo and in vitro. In Myc-CaP mouse PCa cells, metformin decreased c-myc protein levels by at least 50%. (iii) Metformin selectively inhibited the growth of PCa cells by stimulating cell cycle arrest and apoptosis without affecting the growth of normal prostatic epithelial cells (RWPE-1). (iv) Reduced PIN formation by metformin was associated with reduced levels of androgen receptor and proliferation marker Ki-67 in Hi-Myc mouse prostate glands. Our novel findings suggest that by downregulating c-myc, metformin can act as a chemopreventive agent to restrict prostatic neoplasia initiation and transformation. Metformin, an old antidiabetes drug, may inhibit prostate intraepithelial neoplasia transforming to cancer lesion via reducing c-MYC, an 'old' overexpressed oncogene. This study explores chemopreventive efficacy of metformin in prostate cancer and its link to cMYC in vitro and in vivo.
                Bookmark

                Author and article information

                Journal
                The Prostate
                Prostate
                Wiley
                02704137
                December 2017
                December 2017
                October 02 2017
                : 77
                : 16
                : 1563-1572
                Affiliations
                [1 ]Guangdong Provincial Key Laboratory of Urology, Department of Urology and Andrology, Minimally Invasive Surgery Center; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou Guangdong China
                [2 ]Department of Organ Transplantation; The Section Affiliated Hospital of Guangzhou Medical University; Guangzhou China
                [3 ]Department of Urology; The First Affiliated Hospital of University of South China; Hengyang Hunan China
                Article
                10.1002/pros.23432
                28971496
                c67ca436-e938-4fba-8edd-530670531ce3
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article