35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assembling Kidney Tissues from Cells: The Long Road from Organoids to Organs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The field of regenerative medicine has witnessed significant advances that can pave the way to creating de novo organs. Organoids of brain, heart, intestine, liver, lung and also kidney have been developed by directed differentiation of pluripotent stem cells. While the success in producing tissue-specific units and organoids has been remarkable, the maintenance of an aggregation of such units in vitro is still a major challenge. While cell cultures are maintained by diffusion of oxygen and nutrients, three- dimensional in vitro organoids are generally limited in lifespan, size, and maturation due to the lack of a vascular system. Several groups have attempted to improve vascularization of organoids. Upon transplantation into a host, ramification of blood supply of host origin was observed within these organoids. Moreover, sustained circulation allows cells of an in vitro established renal organoid to mature and gain functionality in terms of absorption, secretion and filtration. Thus, the coordination of tissue differentiation and vascularization within developing organoids is an impending necessity to ensure survival, maturation, and functionality in vitro and tissue integration in vivo. In this review, we inquire how the foundation of circulation is laid down during the course of organogenesis, with special focus on the kidney. We will discuss whether nature offers a clue to assist the generation of a nephro-vascular unit that can attain functionality even prior to receiving external blood supply from a host. We revisit the steps that have been taken to induce nephrons and provide vascularity in lab grown tissues. We also discuss the possibilities offered by advancements in the field of vascular biology and developmental nephrology in order to achieve the long-term goal of producing transplantable kidneys in vitro.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development.

          The potential to generate virtually any differentiated cell type from embryonic stem cells (ESCs) offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Embryology has offered important insights into key pathways regulating ESC differentiation, resulting in advances in modeling gastrulation in culture and in the efficient induction of endoderm, mesoderm, and ectoderm and many of their downstream derivatives. This has led to the identification of new multipotential progenitors for the hematopoietic, neural, and cardiovascular lineages and to the development of protocols for the efficient generation of a broad spectrum of cell types including hematopoietic cells, cardiomyocytes, oligodendrocytes, dopamine neurons, and immature pancreatic beta cells. The next challenge will be to demonstrate the functional utility of these cells, both in vitro and in preclinical models of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells.

            Recapitulating three-dimensional (3D) structures of complex organs, such as the kidney, from pluripotent stem cells (PSCs) is a major challenge. Here, we define the developmental origins of the metanephric mesenchyme (MM), which generates most kidney components. Unexpectedly, we find that posteriorly located T(+) MM precursors are developmentally distinct from Osr1(+) ureteric bud progenitors during the postgastrulation stage, and we identify phasic Wnt stimulation and stage-specific growth factor addition as molecular cues that promote their development into the MM. We then use this information to derive MM from PSCs. These progenitors reconstitute the 3D structures of the kidney in vitro, including glomeruli with podocytes and renal tubules with proximal and distal regions and clear lumina. Furthermore, the glomeruli are efficiently vascularized upon transplantation. Thus, by reevaluating the developmental origins of metanephric progenitors, we have provided key insights into kidney specification in vivo and taken important steps toward kidney organogenesis in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development.

              Nephrons, the basic functional units of the kidney, are generated repetitively during kidney organogenesis from a mesenchymal progenitor population. Which cells within this pool give rise to nephrons and how multiple nephron lineages form during this protracted developmental process are unclear. We demonstrate that the Six2-expressing cap mesenchyme represents a multipotent nephron progenitor population. Six2-expressing cells give rise to all cell types of the main body of the nephron during all stages of nephrogenesis. Pulse labeling of Six2-expressing nephron progenitors at the onset of kidney development suggests that the Six2-expressing population is maintained by self-renewal. Clonal analysis indicates that at least some Six2-expressing cells are multipotent, contributing to multiple domains of the nephron. Furthermore, Six2 functions cell autonomously to maintain a progenitor cell status, as cap mesenchyme cells lacking Six2 activity contribute to ectopic nephron tubules, a mechanism dependent on a Wnt9b inductive signal. Taken together, our observations suggest that Six2 activity cell-autonomously regulates a multipotent nephron progenitor population.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                11 November 2015
                2015
                : 3
                : 70
                Affiliations
                [1] 1Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin Berlin, Germany
                [2] 2College of Veterinary Medicine, Seoul National University Seoul, South Korea
                [3] 3Department of Nephrology, Charité- Universitätsmedizin Berlin, Germany
                [4] 4Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
                Author notes

                Edited by: Misty Good, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, USA

                Reviewed by: Kimberly Jean Reidy, Children's Hospital at Montefiore and Albert Einstein College of Medicine, USA; Jacqueline Ho, Children's Hospital of Pittsburgh of UPMC, USA

                *Correspondence: Andreas Kurtz andreas.kurtz@ 123456charite.de ;

                This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2015.00070
                4641242
                26618157
                c6874392-8bd2-44b3-b7d0-4c723fd6b737
                Copyright © 2015 Hariharan, Kurtz and Schmidt-Ott.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 August 2015
                : 23 October 2015
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 86, Pages: 9, Words: 8311
                Categories
                Cell and Developmental Biology
                Review

                pluripotent stem cells,organoids,stem cell differentiation,kidney development,vascularization

                Comments

                Comment on this article