92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets—An Updated View

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis and septic shock are among the leading causes of death in intensive care units worldwide. Numerous studies on their pathophysiology have revealed an imbalance in the inflammatory network leading to tissue damage, organ failure, and ultimately, death. Cytokines are important pleiotropic regulators of the immune response, which have a crucial role in the complex pathophysiology underlying sepsis. They have both pro- and anti-inflammatory functions and are capable of coordinating effective defense mechanisms against invading pathogens. On the other hand, cytokines may dysregulate the immune response and promote tissue-damaging inflammation. In this review, we address the current knowledge of the actions of pro- and anti-inflammatory cytokines in sepsis pathophysiology as well as how these cytokines and other important immunomodulating agents may be therapeutically targeted to improve the clinical outcome of sepsis.

          Related collections

          Most cited references191

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes

          In the present study we demonstrate that human monocytes activated by lipopolysaccharides (LPS) were able to produce high levels of interleukin 10 (IL-10), previously designated cytokine synthesis inhibitory factor (CSIF), in a dose dependent fashion. IL-10 was detectable 7 h after activation of the monocytes and maximal levels of IL-10 production were observed after 24-48 h. These kinetics indicated that the production of IL-10 by human monocytes was relatively late as compared to the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, tumor necrosis factor alpha (TNF alpha), and granulocyte colony-stimulating factor (G-CSF), which were all secreted at high levels 4-8 h after activation. The production of IL-10 by LPS activated monocytes was, similar to that of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF, inhibited by IL-4. Furthermore we demonstrate here that IL-10, added to monocytes, activated by interferon gamma (IFN-gamma), LPS, or combinations of LPS and IFN-gamma at the onset of the cultures, strongly inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF at the transcriptional level. Viral-IL-10, which has similar biological activities on human cells, also inhibited the production of TNF alpha and GM-CSF by monocytes following LPS activation. Activation of monocytes by LPS in the presence of neutralizing anti-IL-10 monoclonal antibodies resulted in the production of higher amounts of cytokines relative to LPS treatment alone, indicating that endogenously produced IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF. In addition, IL-10 had autoregulatory effects since it strongly inhibited IL-10 mRNA synthesis in LPS activated monocytes. Furthermore, endogenously produced IL-10 was found to be responsible for the reduction in class II major histocompatibility complex (MHC) expression following activation of monocytes with LPS. Taken together our results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003.

            To determine recent trends in rates of hospitalization, mortality, and hospital case fatality for severe sepsis in the United States. Trend analysis for the period from 1993 to 2003. U.S. community hospitals from the Nationwide Inpatient Sample that is a 20% stratified sample of all U.S. community hospitals. Subjects of any age with sepsis including severe sepsis who were hospitalized in the United States during the study period. None. Utilizing International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes for septicemia and major organ dysfunction, we identified 8,403,766 patients with sepsis, including 2,857,476 patients with severe sepsis, who were hospitalized in the United States from 1993 to 2003. The percentage of severe sepsis cases among all sepsis cases increased continuously from 25.6% in 1993 to 43.8% in 2003 (p < .001). Age-adjusted rate of hospitalization for severe sepsis grew from 66.8 +/- 0.16 to 132.0 +/- 0.21 per 100,000 population (p < .001). Age-adjusted, population-based mortality rate within these years increased from 30.3 +/- 0.11 to 49.7 +/- 0.13 per 100,000 population (p < .001), whereas hospital case fatality rate fell from 45.8% +/- 0.17% to 37.8% +/- 0.10% (p < .001). During each study year, the rates of hospitalization, mortality, and case fatality increased with age. Hospitalization and mortality rates in males exceeded those in females, but case fatality rate was greater in females. From 1993 to 2003, age-adjusted rates for severe sepsis hospitalization and mortality increased annually by 8.2% (p < .001) and 5.6% (p < .001), respectively, whereas case fatality rate decreased by 1.4% (p < .001). The rate of severe sepsis hospitalization almost doubled during the 11-yr period studied and is considerably greater than has been previously predicted. Mortality from severe sepsis also increased significantly. However, case fatality rates decreased during the same study period.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disseminated tuberculosis in interferon gamma gene-disrupted mice

              The expression of protective immunity to Mycobacterium tuberculosis in mice is mediated by T lymphocytes that secrete cytokines. These molecules then mediate a variety of roles, including the activation of parasitized host macrophages, and the recruitment of other mononuclear phagocytes to the site of the infection in order to initiate granuloma formation. Among these cytokines, interferon gamma (IFN-gamma) is believed to play a key role is these events. In confirmation of this hypothesis, we show in this study that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically. In such mice, a progressive and widespread tissue destruction and necrosis, associated with very high numbers of acid- fast bacilli, was observed. In contrast, despite the lack of protective immunity, some DTH-like reactivity could still be elicited. These data, therefore, indicate that although IFN-gamma may not be needed for DTH expression, it plays a pivotal and essential role in protective cellular immunity to tuberculosis infection.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2013
                18 June 2013
                : 2013
                : 165974
                Affiliations
                1Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center, S525, P.O. Box 208031, 300 Cedar Street, New Haven, CT 06520-8031, USA
                2Institute of Biochemistry and Molecular Cell Biology, University Hospital of RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
                Author notes

                Academic Editor: Celeste C. Finnerty

                Author information
                https://orcid.org/0000-0001-5776-0447
                Article
                10.1155/2013/165974
                3703895
                23853427
                c697780e-3b5b-4670-8715-a741c4d30639
                Copyright © 2013 Wibke Schulte et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 October 2012
                : 22 May 2013
                Funding
                Funded by: http://dx.doi.org/10.13039/100000009 Foundation for the National Institutes of Health
                Award ID: RO1AI042310
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article